Shifts in N and δ15N in wheat and barley exposed to cerium oxide nanoparticles.

[1]  Cyren M. Rico,et al.  Cerium oxide nanoparticles transformation at the root-soil interface of barley (Hordeum vulgare L.). , 2018, Environmental science. Nano.

[2]  D. Howard,et al.  Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum). , 2017, Environmental science & technology.

[3]  Cyren M. Rico,et al.  Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. , 2017, Environmental science. Nano.

[4]  Carmen García-Olaverri,et al.  Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability , 2015, Front. Plant Sci..

[5]  Lixin Wang,et al.  Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils , 2015, Plant and Soil.

[6]  Cyren M. Rico,et al.  Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles , 2015, Environmental Science and Pollution Research.

[7]  Cyren M. Rico,et al.  Differential Effects of Cerium Oxide Nanoparticles on Rice, Wheat, and Barley Roots: A Fourier Transform Infrared (FT-IR) Microspectroscopy Study , 2015, Applied spectroscopy.

[8]  Y. Arai,et al.  Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles , 2015, International journal of environmental research and public health.

[9]  Cyren M. Rico,et al.  Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). , 2014, Journal of agricultural and food chemistry.

[10]  R. Guy,et al.  Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. , 2014, Physiologia plantarum.

[11]  Cyren M. Rico,et al.  Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. , 2013, Environmental science & technology.

[12]  R. Guy,et al.  Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. , 2013, Physiologia plantarum.

[13]  M. Unkovich Isotope discrimination provides new insight into biological nitrogen fixation. , 2013, The New phytologist.

[14]  Jing Zhang,et al.  Biotransformation of ceria nanoparticles in cucumber plants. , 2012, ACS nano.

[15]  Hongtao Wang,et al.  Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. , 2010, Environmental science & technology.

[16]  H. Roche,et al.  Can we use stable isotopes for ecotoxicological studies? Effect of DDT on isotopic fractionation in Perca fluviatilis. , 2009, Chemosphere.

[17]  J. Marshall,et al.  Sources of Variation in the Stable Isotopic Composition of Plants , 2008 .

[18]  Li Hong Zhang,et al.  Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata1 , 2006, Plant Physiology.

[19]  W. Reisser,et al.  Analysis of arsenic species accumulation by plants and the influence on their nitrogen uptake , 2004 .

[20]  K. Jung,et al.  Effects of heavy metals on the nitrogen metabolism of the aquatic mossFontinalis antipyretica L. ex Hedw , 2002, Environmental science and pollution research international.

[21]  R. D. Evans,et al.  Physiological mechanisms influencing plant nitrogen isotope composition. , 2001, Trends in plant science.

[22]  G. Schüürmann,et al.  Using Natural Isotope Variations of Nitrogen in Plants as an Early Indicator of Air Pollution Stress , 1997 .

[23]  J. Ehleringer,et al.  Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T‐5) grown under ammonium or nitrate nutrition , 1996 .

[24]  R. Tate Nitrogen in Terrestrial Ecosystems. Questions of Productivity, Vegetational Changes, and Ecosystem Stability , 1992 .

[25]  E. Schulze,et al.  Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria , 1991, Oecologia.

[26]  C. Tamm Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Changes, and Ecosystem Stability , 1991 .

[27]  A. Mariotti,et al.  Nitrogen Isotope Fractionation Associated with Nitrate Reductase Activity and Uptake of NO(3) by Pearl Millet. , 1982, Plant physiology.

[28]  Jean-Marie Dubois,et al.  On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements , 1982 .

[29]  J. Peralta-Videa,et al.  Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. , 2017, Plant physiology and biochemistry : PPB.

[30]  Jason C. White,et al.  Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk , 2016 .

[31]  Hollis G. Potter,et al.  Author Manuscript , 2013 .

[32]  Matthew A. Marcus,et al.  Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques , 2002 .

[33]  D. C. Gordon,et al.  Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes , 2000 .

[34]  Prof. Dr. Carl Olof Tamm Nitrogen in Terrestrial Ecosystems , 1991, Ecological Studies.

[35]  J. Cock,et al.  Laboratory manual for physiological studies of rice , 1971 .