Mathematical modeling and parameters estimation of car crash using eigensystem realization algorithm and curve-fitting approaches

An eigensystem realization algorithm (ERA) approach for estimating the structural system matrices is proposed in this paper using the measurements of acceleration data available from the real crash test. A mathematical model that represents the real vehicle frontal crash scenario is presented. The model’s structure is a double-spring-mass-damper system, whereby the front mass represents the vehicle-chassis and the rear mass represents the passenger compartment. The physical parameters of the model are estimated using curve-fitting approach, and the estimated state system matrices are estimated by using the ERA approach. The model is validated by comparing the results from the model with those from the real crash test.

[1]  Jun Hu,et al.  Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements , 2013, Int. J. Control.

[2]  Javad Marzbanrad,et al.  Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash , 2011 .

[3]  Paulo Veríssimo,et al.  Development of generic multibody road vehicle models for crashworthiness , 2008 .

[4]  Zidong Wang,et al.  Quantized $H_{\infty }$ Control for Nonlinear Stochastic Time-Delay Systems With Missing Measurements , 2012, IEEE Transactions on Automatic Control.

[5]  Ahmet S. Yigit,et al.  Dynamic Analysis and Control of Automotive Occupant Restraint Systems , 2011 .

[6]  Javad Marzbanrad,et al.  A System Identification Algorithm for Vehicle Lumped Parameter Model in Crash Analysis , 2011 .

[7]  Wen-Jiunn Ko,et al.  EXTRACTION OF STRUCTURAL SYSTEM MATRICES FROM AN IDENTIFIED STATE-SPACE SYSTEM USING THE COMBINED MEASUREMENTS OF DVA , 2002 .

[8]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[9]  Domenico Guida,et al.  Parameter Identification of a Two Degrees of Freedom Mechanical System , 2009 .

[10]  Javad Marzbanrad,et al.  Calculation of vehicle-lumped model parameters considering occupant deceleration in frontal crash , 2011 .

[11]  Kjell G. Robbersmyr,et al.  Application of viscoelastic hybrid models to vehicle crash simulation , 2011 .

[12]  Norman Jones,et al.  Vehicle Crash Mechanics , 2002 .

[13]  Hamid Reza Karimi,et al.  Development of lumped-parameter mathematical models for a vehicle localized impact , 2011 .

[14]  C. Yang,et al.  Identification, reduction, and refinement of model parameters by theeigensystem realization algorithm , 1990 .

[15]  Huijun Gao,et al.  Finite-Horizon $H_{\infty} $ Filtering With Missing Measurements and Quantization Effects , 2013, IEEE Transactions on Automatic Control.

[16]  Dar Yun Chiang,et al.  Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique , 2010 .

[17]  Bart De Moor,et al.  Combined Deterministic-Stochastic Identification , 1996 .

[18]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[19]  Peter Eberhard,et al.  Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure , 2011 .

[20]  Hamid Reza Karimi,et al.  Mathematical modeling and parameters estimation of a car crash using data-based regressive model approach , 2011 .

[21]  Hamid Reza Karimi,et al.  Mathematical modeling of a vehicle crash test based on elasto-plastic unloading scenarios of spring-mass models , 2011 .