The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case

In this paper, we prove that solutions of the anisotropic Allen--Cahn equation in double-obstacle form with kinetic term \begin{displaymath} \varepsilon \beta(\nabla \varphi) \partial_t \varphi - \varepsilon \nabla A'(\nabla \varphi) - \frac{1}{\varepsilon} \varphi = \frac{\pi}{4} u \quad \mbox{ in } [|\varphi| < 1], \end{displaymath} where A is a convex function homogeneous of degree two and $\beta$ depends only on the direction of $\nabla \varphi$, converge to an anisotropic mean-curvature flow \begin{displaymath} \beta(N) V_N = - \mbox{tr}(B(N) D^2 B(N) R) - B(N) u. \end{displaymath} Here $N,\ V_N, \mbox{ and } R$ denote the normal, the normal velocity, and the second fundamental form of the interface, respectively, and $B := \sqrt{2A}$.

[1]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[2]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[3]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[4]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[5]  Charles M. Elliott,et al.  The limit of the anisotropic double-obstacle Allen–Cahn equation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  H. Soner MOTION OF A SET BY THE CURVATURE OF ITS BOUNDARY , 1993 .

[7]  A. A. Wheeler,et al.  A -vector Formulation of Anisotropic Phase-field Models: 3-d Asymptotics Phase-field -vector , 1995 .

[8]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[9]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[10]  Charles M. Elliott,et al.  Asymptotics for a parabolic double obstacle problem , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Maurizio Paolini,et al.  Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.

[12]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[13]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .

[14]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[15]  Ricardo H. Nochetto,et al.  SHARP ERROR ANALYSIS FOR CURVATURE DEPENDENT EVOLVING FRONTS , 1993 .

[16]  R. Nochetto,et al.  Convergence of double obstacle problems to the generalized geometric motion of fronts , 1995 .

[17]  Wheeler,et al.  Phase-field models for anisotropic interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Xinfu Chen,et al.  Generation and propagation of the interface for reaction-diffusion equations , 1990 .

[19]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.