Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel

[1]  L. Liang,et al.  Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel , 2017 .

[2]  M. Anitescu,et al.  Mesoscale model for fission-induced recrystallization in U-7Mo alloy , 2016 .

[3]  W. Setyawan,et al.  Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation , 2016 .

[4]  M. Anitescu,et al.  Grain growth in U-7Mo alloy: A combined first-principles and phase field study , 2016 .

[5]  J. Almer,et al.  High-Energy Synchrotron Study of In-Pile-Irradiated U-Mo Fuels , 2016 .

[6]  Shenyang Hu,et al.  Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles , 2015 .

[7]  D. Keiser,et al.  Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7 wt%Mo dispersion fuels , 2015 .

[8]  T. Hochrainer,et al.  A sharp interface model for void growth in irradiated materials , 2015 .

[9]  D. Keiser,et al.  Microstructural characterization of irradiated U-7Mo/Al-5Si dispersion fuel to high fission density , 2014 .

[10]  T. Hochrainer,et al.  Diffuse interface modeling of void growth in irradiated materials. Mathematical, thermodynamic and atomistic perspectives , 2014 .

[11]  Hongxing Xiao,et al.  A modified equation of state for Xe at high pressures by molecular dynamics simulation , 2014 .

[12]  J. Rest,et al.  In situ TEM investigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal , 2013 .

[13]  Xin Sun,et al.  Computer simulations of interstitial loop growth kinetics in irradiated bcc Fe , 2012 .

[14]  Michael R. Tonks,et al.  Phase-field simulation of intergranular bubble growth and percolation in bicrystals , 2012 .

[15]  D. Keiser,et al.  TEM characterization of U–7Mo/Al–2Si dispersion fuel irradiated to intermediate and high fission densities , 2012 .

[16]  Bulent S. Biner,et al.  Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction , 2012 .

[17]  Gerard L. Hofman,et al.  Fission product induced swelling of U–Mo alloy fuel , 2011 .

[18]  M. Tonks,et al.  Phase-field simulation of irradiated metals: Part I: Void kinetics , 2011 .

[19]  Xin Sun,et al.  Evolution kinetics of interstitial loops in irradiated materials: a phase-field model , 2011 .

[20]  A. El-Azab,et al.  Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics , 2011 .

[21]  Xin Sun,et al.  Phase-field modeling of void migration and growth kinetics in materials under irradiation and temperature field , 2010 .

[22]  J. Rest Evolution of fission-gas-bubble-size distribution in recrystallized U–10Mo nuclear fuel , 2010 .

[23]  J. Rest An analytical study of gas-bubble nucleation mechanisms in uranium-alloy nuclear fuel at high temperature☆ , 2010 .

[24]  C. Henager,et al.  Phase-field simulation of void migration in a temperature gradient , 2010 .

[25]  Xin Sun,et al.  Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels , 2010 .

[26]  Charles H. Henager,et al.  Phase-field Modeling of Void Lattice Formation under Irradiation , 2009 .

[27]  Marius Stan,et al.  Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels , 2009 .

[28]  Shenyang Y. Hu,et al.  Simulation of damage evolution in composites : A phase-field model , 2009 .

[29]  Donald R. Olander,et al.  Re-solution of fission gas : A review: Part. I. Intragranular bubbles , 2006 .

[30]  J. Spino,et al.  Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up , 2005 .

[31]  Y. Kim,et al.  A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR , 2005 .

[32]  J. Rest,et al.  The effect of irradiation-induced gas-atom re-solution on grain-boundary bubble growth , 2003 .

[33]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[34]  Jeff Simmons,et al.  Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events , 2000 .

[35]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[36]  J. L. Snelgrove,et al.  Development of very-high-density low-enriched-uranium fuels 1 Work supported by the US Department of , 1997 .

[37]  A. Motta,et al.  The formation of bubbles in Zr alloys under Kr ion irradiation , 1996 .

[38]  J. Rest,et al.  Dynamics of irradiation-induced grain subdivision and swelling in U3Si2 and UO2 fuels☆ , 1994 .

[39]  J. Rest Kinetics of fission-gas-bubble-nucleated void swelling of the alpha-uranium phase of irradiated U-Zr and U-Pu-Zr fuel , 1993 .

[40]  A. W. Cronenberg,et al.  Modeling the behavior of Xe, I, Cs, Te, Ba, and Sr in solid and liquefied fuel during severe accidents☆ , 1987 .

[41]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[42]  M. Wood Modelling bubble nucleation and fission-induced re-solution in nuclear fuel , 1979 .

[43]  J. Turnbull,et al.  The re-solution of fission-gas atoms from bubbles during the irradiation of UO2 at an elevated temperature , 1971 .

[44]  J. A. Turnbull,et al.  The distribution of intragranular fission gas bubbles in UO2 during irradiation , 1971 .

[45]  R. S. Nelson The influence of irradiation on the nucleation of gas bubbles in reactor fuels , 1968 .