Chapter 1 - A Personal Perspective on the Early Years of General Circulation Modeling at UCLA

This chapter provides a personal perspective on the early years of general circulation modeling at University of California, Los Angeles (UCLA), and serves as a memoir in the evolution of ideas in the history of general circulation modeling at UCLA, with references to the history of numerical modeling of the atmosphere. Periods of early general circulation models (GCM) are reviewed, covering their prelude and the “epoch-making” first phase. The chapter also focuses on the history during the pre-UCLA period, and the work at UCLA on the “Arakawa Jacobian.” The development of the “Mintz-Arakawa model,” which belongs to the first generation of the UCLA general circulation models, is also reviewed. The “magnificent” second phase in the general history of numerical modeling of the atmosphere and the different generations of the UCLA general circulation model are developed during this phase. The development of the early GCMs stimulated the meteorological community to look into the feasibility of a global observation and analysis experiment. The chapter also discusses in detail the evolution of the generations for selected modeling aspects, which are vertical differencing, horizontal differencing, formulation of planetary boundary layer processes, and formulation of moist processes.

[1]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[2]  J. Neumann,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[3]  R. Sadourny The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .

[4]  M. Yanai A Detailed Analysis of Typhoon Formation , 1961 .

[5]  A. Hollingsworth,et al.  An internal symmetric computational instability , 1983 .

[6]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[7]  J. G. Charney,et al.  A Numerical Method for Predicting the Perturbations of the Middle Latitude Westerlies , 1949 .

[8]  Yale Mintz,et al.  Very Long-Term Global Integration of the Primitive Equations of Atmospheric Motion : AN Experiment in Climate Simulation , 1968 .

[9]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[10]  Douglas K. Lilly Introduction to “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion , 1997 .

[11]  E. Eady Note on Weather Computing and the so-called 2½-dimensional Model , 1952 .

[12]  D. Jespersen,et al.  Arakawa's method is a finite-element method , 1974 .

[13]  J. Charney ON A PHYSICAL BASIS FOR NUMERICAL PREDICTION OF LARGE-SCALE MOTIONS IN THE ATMOSPHERE , 1949 .

[14]  AN APPROXIMATION TO THE PRODUCT OF DISCRETE FUNCTIONS , 1961 .

[15]  A. Arakawa,et al.  Description and Preliminary Results of the 9-level UCLA General Circulation Model , 1979 .

[16]  Zavisa Janjic,et al.  A Stable Centered Difference Scheme Free of Two-Grid-Interval Noise , 1974 .

[17]  A. Katayama,et al.  A Numerical Experiment of the Atmospheric Radiation , 1960 .

[18]  Norman A. Phillips,et al.  The general circulation of the atmosphere: A numerical experiment , 1956 .

[19]  A. Arakawa The Variation of General Circulation in the Barotropic Atmosphere , 1961 .

[20]  N. A. Phillips,et al.  A COORDINATE SYSTEM HAVING SOME SPECIAL ADVANTAGES FOR NUMERICAL FORECASTING , 1957 .

[21]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[22]  John M. Lewis,et al.  Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment , 1998 .

[23]  Akio Arakawa,et al.  The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results , 1983 .

[24]  Warren M. Washington,et al.  NCAR global General Circulation Model of the atmosphere , 1967 .

[25]  A. Arakawa,et al.  Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations , 1990 .

[26]  Stephen J. Lord,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part III: Semi-Prognostic Test of the Arakawa-Schubert Cumulus Parameterization , 1982 .

[27]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[28]  A. Eliassen,et al.  SYMPOSIUM ON NUMERICAL FORECASTING: Simplified Dynamic Models of the Atmosphere, designed for the Purpose of Numerical Weather Prediction , 1952 .

[29]  A. Arakawa On the Maintenance of Zonal Mean Flow , 1957 .

[30]  Fedor Mesinger,et al.  A method for construction of second-order accuracy difference schemes permitting no false two-grid-interval wave in the height field , 1973 .

[31]  Akio Arakawa,et al.  Numerical modeling of the atmosphere with an isentropic vertical coordinate , 1990 .

[32]  Norman A. Phillips,et al.  A SIMPLE THREE-DIMENSIONAL MODEL FOR THE STUDY OF LARGE-SCALE EXTRATROPICAL FLOW PATTERNS , 1951 .

[33]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[34]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[35]  Hajime Nakamura Comparisons of Horizontal Grid Systems for Integrating the Primitive Equations on a Sphere , 1978 .

[36]  A S Monin,et al.  BASIC LAWS OF TURBULENT MIXING IN THE GROUND LAYER OF ATMOSPHERE , 1954 .

[37]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .

[38]  A. Arakawa Design of the UCLA general circulation model , 1972 .

[39]  Lawrence L. Takacs Effects of using a posteriori methods for the conservation of integral invariants. [for weather forecasting] , 1988 .

[40]  H. Kuo Dynamical Aspects of the General Circulation and the Stability of Zonal Flow , 1951 .

[41]  David A. Randall,et al.  Implementation of the Arakawa-Schubert Cumulus Parameterization with a Prognostic Closure , 1993 .

[42]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations Based on the Charney–Phillips Grid in Hybrid &sigma–p Vertical Coordinates , 1996 .

[43]  Harshvardhan,et al.  Earth radiation budget and cloudiness simulations with a general circulation model , 1989 .

[44]  Akio Arakawa,et al.  Baroclinic Instability in Vertically Discrete Systems. , 1988 .

[45]  J. G. Charney,et al.  The Use of the Primitive Equations of Motion in Numerical Prediction , 1955 .

[46]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[47]  Stephen Lord Development and Observational Verification of a Cumulus Cloud Parameterization. , 1978 .

[48]  C. Rossby Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action , 1939 .

[49]  J. Deardorff,et al.  Parameterization of the Planetary Boundary layer for Use in General Circulation Models1 , 1972 .

[50]  Edward N. Lorenz,et al.  Available Potential Energy and the Maintenance of the General Circulation , 1955 .

[51]  Kenji Takano,et al.  A Fourth Order Energy and Potential Enstrophy Conserving Difference Scheme , 1982 .

[52]  Wayne Howard Schubert The Interaction of a Cumulus Cloud Ensemble with the Large Scale Environment. , 1973 .

[53]  A. B. Kahle,et al.  A Documentation of the Mintz-Arakawa Two-Level Atmospheric General Circulation Model , 1971 .

[54]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[55]  J. G. Charney,et al.  Integration of the primitive and balance equations. , 1962 .

[56]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[57]  D. Randall,et al.  The Arakawa-Schubert Parameterization , 1997 .

[58]  A. Arakawa,et al.  Numerical methods used in atmospheric models , 1976 .

[59]  Bert Bolin Multiple-Parameter Models of the Atmosphere for Numerical Forecasting Purposes , 1953 .

[60]  H. Kuo On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection , 1965 .

[61]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part II , 1980 .

[62]  G. Platzman a retrospective view of Richardson's book on weather prediction* , 1967 .

[63]  A. Arakawa Non-Geostrophic Effects in the Baroclinic Prognostic Equation , 1960 .

[64]  J. G. Charney,et al.  On the Growth of the Hurricane Depression , 1964 .

[65]  Akio Arakawa,et al.  Finite-Difference Methods in Climate Modeling , 1988 .

[66]  Tatsushi Tokioka,et al.  Some Considerations on Vertical Differencing , 1978 .

[67]  M. Iredell,et al.  On the effect of high latitude filtering in global grid point models , 1981 .

[68]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952, Tellus A: Dynamic Meteorology and Oceanography.

[69]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[70]  Stephen J. Lord,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment. Part IV: The Discrete Model , 1982 .

[71]  Zavisa Janjic,et al.  Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids , 1984 .

[72]  S. Manabe,et al.  SIMULATED CLIMATOLOGY OF A GENERAL CIRCULATION MODEL WITH A HYDROLOGIC CYCLE , 1965 .

[73]  Syukuro Manabe,et al.  NUMERICAL RESULTS FROM A NINE-LEVEL GENERAL CIRCULATION MODEL OF THE ATMOSPHERE1 , 1965 .

[74]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations in Sigma Coordinates , 1983 .

[75]  A. Arakawa,et al.  Inclusion of Rainwater Budget and Convective Downdrafts in the Arakawa-Schubert Cumulus Parameterization , 1997 .

[76]  Roger Davies,et al.  A fast radiation parameterization for atmospheric circulation models , 1987 .

[77]  A. Arakawa,et al.  The Arakawa-Schubert Cumulus Parameterization , 1993 .

[78]  K. Ooyama,et al.  Numerical Simulation of the Life Cycle of Tropical Cyclones , 1969 .

[79]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[80]  Akio Arakawa,et al.  Closure Assumptions in the Cumulus Parameterization Problem , 1986 .

[81]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[82]  Young-Joon Kim,et al.  Improvement of Orographic Gravity Wave Parameterization Using a Mesoscale Gravity Wave Model , 1995 .

[83]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[84]  Michael E. Schlesinger,et al.  Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model. , 1979 .

[85]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .