Automorphisms of models of bounded arithmetic

We establish the following model theoretic characterization of the fragment I¢0+Exp+B§1 of Peano arithmetic in terms of fixed points of automorphisms of models of bounded arithmetic (the fragment I¢0 of Peano arithmetic with induction limited to ¢0-formulae).

[1]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[2]  Jeremy Avigad,et al.  Number theory and elementary arithmetic , 2003 .

[3]  Wilfried Sieg,et al.  Fragments of arithmetic , 1985, Ann. Pure Appl. Log..

[4]  Jon Barwise,et al.  On recursively saturated models of arithmetic , 1975 .

[5]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[6]  Roman Kossak,et al.  On two questions concerning the automorphism groups of countable recursively saturated models of PA , 1996, Arch. Math. Log..

[7]  Jeremy Avigad,et al.  Saturated models of universal theories , 2002, Ann. Pure Appl. Log..

[8]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[9]  J. Krajícek Bounded Arithmetic, Propositional Logic, and Complexity Theory: Witnessing theorems , 1995 .

[10]  Roman Kossak,et al.  Results on automorphisms of recursively saturated models of PA , 1988 .

[11]  C. Parsons On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .

[12]  Richard Kaye Model-Theoretic Properties Characterizing Peano Arithmetic , 1991, J. Symb. Log..

[13]  Astrophysics,et al.  The Characteristics of Millisecond Pulsar Emission. I. Spectra, Pulse Shapes, and the Beaming Fraction , 1998, astro-ph/9801177.

[14]  Richard Kaye,et al.  Automorphisms of Recursively Saturated Models of Arithmetic , 1991, Ann. Pure Appl. Log..

[15]  Jeff B. Paris,et al.  Some conservation results for fragments of arithmetic , 1981 .

[16]  Roman Kossak Automorphisms of Recursively Saturated Models of Peano Arithmetic: Fixed Point Sets , 1997, Log. J. IGPL.

[17]  Henryk Kotlarski On Cofinal Extensions of Models of Arithmetic , 1983, J. Symb. Log..

[18]  A. S. Troelstra,et al.  Basic Proof Theory: Proof theory of arithmetic , 2000 .

[19]  R. Jensen On the Consistency of a Slight (?) Modification of Quine’s New Foundations , 1968 .

[20]  Richard Kaye,et al.  Automorphisms of first-order structures , 1994 .

[21]  Kazuyuki Tanaka The Self-Embedding Theorem of WKL0 and a Non-Standard Method , 1997, Ann. Pure Appl. Log..

[22]  J. Schlipf,et al.  Recursively saturated models of set theory , 1980 .

[23]  Haim Gaifman,et al.  Models and types of Peano's arithmetic , 1976 .

[24]  Ronald Björn Jensen On the consistency of a slight (?) Modification of quine'sMew Foundations , 1968, Synthese.

[25]  James H. Schmerl Recursively saturated models generated by indiscernibles , 1985, Notre Dame J. Formal Log..

[26]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[27]  M. Wodzicki Lecture Notes in Math , 1984 .

[28]  V. M. Kopytov,et al.  Ordered permutation groups , 1994 .

[29]  C. Smoryński Back-and-Forth Inside A Recursively Saturated Model of Arithmetic , 1982 .

[30]  Jeremy Avigad Erratum to "Saturated models of universal theories": [Ann. Pure Appl. Logic 118 (2002) 219-234] , 2003, Ann. Pure Appl. Log..

[31]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[32]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[33]  James H. Schmerl Recursively saturated, rather classless models of peano arithmetic , 1981 .

[34]  Jeff B. Paris,et al.  On the Existence of end Extensions of Models of Bounded Induction , 1989 .

[35]  Jeff B. Paris,et al.  Closure properties of countable non-standard integers , 1979 .

[36]  Pavel Pudlák A definition of exponentiation by a bounded arithmetical formula , 1983 .

[37]  A. Tsarpalias,et al.  A Combinatorial Theorem , 1981, J. Comb. Theory, Ser. A.

[38]  Lev D. Beklemishev,et al.  A proof-theoretic analysis of collection , 1998, Arch. Math. Log..

[39]  George Wilmers,et al.  Models OF Peano Arithmetic (Oxford Logic Guides 15) , 1993 .

[40]  Samuel R. Buss,et al.  Chapter II - First-Order Proof Theory of Arithmetic , 1998 .

[41]  Ali Enayat,et al.  FROM BOUNDED ARITHMETIC TO SECOND ORDER ARITHMETIC VIA AUTOMORPHISMS , 2005 .

[42]  Ali Enayat Automorphisms of models of arithmetic: A unified view , 2007, Ann. Pure Appl. Log..

[43]  Leszek Pacholski,et al.  Model theory of algebra and arithmetic , 1980 .

[44]  Willard Van Orman Quine,et al.  New Foundations for Mathematical Logic , 1937 .