Relational dual tableaux for interval temporal logics ★
暂无分享,去创建一个
Davide Bresolin | Joanna Golinska-Pilarek | Ewa Orlowska | E. Orlowska | Joanna Golinska-Pilarek | Davide Bresolin
[1] Michael R. Hansen,et al. An Adequate First Order Interval Logic , 1997, COMPOS.
[2] James F. Allen. Maintaining knowledge about temporal intervals , 1983, CACM.
[3] Ewa Orlowska,et al. Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus , 2002, Stud Logica.
[4] Bresolin Davide,et al. A tableau-based decision procedure for a branching-time interval temporal logic , 2005 .
[5] Valentin Goranko,et al. A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.
[6] Valentin Goranko,et al. A general tableau method for propositional interval temporal logics: Theory and implementation , 2006, J. Appl. Log..
[7] Joanna Golinska-Pilarek,et al. Relational Logics and Their Applications , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.
[8] Yde Venema,et al. Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..
[9] Davide Bresolin,et al. An Optimal Decision Procedure for Right Propositional Neighborhood Logic , 2006, Journal of Automated Reasoning.
[10] Guido Sciavicco,et al. Decidability of Interval Temporal Logics over Split-Frames via Granularity , 2002, JELIA.
[11] Ewa Orlowska,et al. Relational Proof Systems for Modal Logics , 1996 .
[12] E. Orlowska. Relational interpretation of modal logics , 1988 .
[13] Louise E. Moser,et al. An Automata-Theoretic Decision Procedure for Future Interval Logic , 1992, FSTTCS.
[14] Valentin Goranko,et al. Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..
[15] Howard Bowman,et al. A Decision Procedure and Complete Axiomatization of Finite Interval Temporal Logic with Projection , 2003, J. Log. Comput..
[16] P. Ladkin,et al. The algebra of convex time intervals , 1987 .
[17] Yoav Shoham,et al. A propositional modal logic of time intervals , 1991, JACM.
[18] Joanna Golinska-Pilarek,et al. Tableaux and Dual Tableaux: Transformation of Proofs , 2007, Stud Logica.
[19] Yde Venema,et al. A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..
[20] Valentin Goranko,et al. A General Tableau Method for Propositional Interval Temporal Logics , 2003, TABLEAUX.
[21] Louise E. Moser,et al. A real-time interval logic and its decision procedure , 1993, FSTTCS.
[22] Thomas Marthedal Rasmussen,et al. Labelled Natural Deduction for Interval Logics , 2001, CSL.
[23] Thomas Marthedal Rasmussen,et al. A Sequent Calculus for Signed Interval Logic , 2001 .
[24] Kamal Lodaya,et al. Sharpening the Undecidability of Interval Temporal Logic , 2000, ASIAN.
[25] Louise E. Moser,et al. Interval Logics and Their Decision Procedures, Part I: An Interval Logic , 1996, Theor. Comput. Sci..
[26] Benjamin Charles Moszkowski. Reasoning about Digital Circuits , 1983 .
[27] Andrea Formisano,et al. A Prolog tool for relational translation of modal logics: a front-end for relational proof systems , 2005 .
[28] Louise E. Moser,et al. Interval logics and their decision procedures: Part II: a real-time interval logic☆ , 1996 .
[29] Louise E. Moser,et al. Interval Logics and Their Decision Procedures. Part II: A Real-Time Interval Logic , 1996, Theor. Comput. Sci..
[30] Davide Bresolin,et al. A Tableau-Based Decision Procedure for Right Propositional Neighborhood Logic , 2005, TABLEAUX.
[31] R. Sikorski,et al. The mathematics of metamathematics , 1963 .