Relational dual tableaux for interval temporal logics ★

Interval temporal logics provide both an insight into a nature of time and a framework for temporal reasoning in various areas of computer science. In this paper we present sound and complete relational proof systems in the style of dual tableaux for relational logics associated with modal logics of temporal intervals and we prove that the systems enable us to verify validity and entailment of these temporal logics. We show how to incorporate in the systems various relations between intervals and/or various time orderings.

[1]  Michael R. Hansen,et al.  An Adequate First Order Interval Logic , 1997, COMPOS.

[2]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[3]  Ewa Orlowska,et al.  Correspondence Results for Relational Proof Systems with Application to the Lambek Calculus , 2002, Stud Logica.

[4]  Bresolin Davide,et al.  A tableau-based decision procedure for a branching-time interval temporal logic , 2005 .

[5]  Valentin Goranko,et al.  A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.

[6]  Valentin Goranko,et al.  A general tableau method for propositional interval temporal logics: Theory and implementation , 2006, J. Appl. Log..

[7]  Joanna Golinska-Pilarek,et al.  Relational Logics and Their Applications , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.

[8]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[9]  Davide Bresolin,et al.  An Optimal Decision Procedure for Right Propositional Neighborhood Logic , 2006, Journal of Automated Reasoning.

[10]  Guido Sciavicco,et al.  Decidability of Interval Temporal Logics over Split-Frames via Granularity , 2002, JELIA.

[11]  Ewa Orlowska,et al.  Relational Proof Systems for Modal Logics , 1996 .

[12]  E. Orlowska Relational interpretation of modal logics , 1988 .

[13]  Louise E. Moser,et al.  An Automata-Theoretic Decision Procedure for Future Interval Logic , 1992, FSTTCS.

[14]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[15]  Howard Bowman,et al.  A Decision Procedure and Complete Axiomatization of Finite Interval Temporal Logic with Projection , 2003, J. Log. Comput..

[16]  P. Ladkin,et al.  The algebra of convex time intervals , 1987 .

[17]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[18]  Joanna Golinska-Pilarek,et al.  Tableaux and Dual Tableaux: Transformation of Proofs , 2007, Stud Logica.

[19]  Yde Venema,et al.  A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..

[20]  Valentin Goranko,et al.  A General Tableau Method for Propositional Interval Temporal Logics , 2003, TABLEAUX.

[21]  Louise E. Moser,et al.  A real-time interval logic and its decision procedure , 1993, FSTTCS.

[22]  Thomas Marthedal Rasmussen,et al.  Labelled Natural Deduction for Interval Logics , 2001, CSL.

[23]  Thomas Marthedal Rasmussen,et al.  A Sequent Calculus for Signed Interval Logic , 2001 .

[24]  Kamal Lodaya,et al.  Sharpening the Undecidability of Interval Temporal Logic , 2000, ASIAN.

[25]  Louise E. Moser,et al.  Interval Logics and Their Decision Procedures, Part I: An Interval Logic , 1996, Theor. Comput. Sci..

[26]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[27]  Andrea Formisano,et al.  A Prolog tool for relational translation of modal logics: a front-end for relational proof systems , 2005 .

[28]  Louise E. Moser,et al.  Interval logics and their decision procedures: Part II: a real-time interval logic☆ , 1996 .

[29]  Louise E. Moser,et al.  Interval Logics and Their Decision Procedures. Part II: A Real-Time Interval Logic , 1996, Theor. Comput. Sci..

[30]  Davide Bresolin,et al.  A Tableau-Based Decision Procedure for Right Propositional Neighborhood Logic , 2005, TABLEAUX.

[31]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .