Self-Consistent Electrothermal Modeling of Class A, AB, and B Power GaN HEMTs Under Modulated RF Excitation

This paper presents an accurate and flexible approach to the self-consistent electrothermal modeling of III-N-based HEMTs, combining a temperature-dependent electrical compact model with a novel behavioral nonlinear dynamic thermal model, suitable for circuit-level simulations. The behavioral thermal model is extracted, according to a Wiener-like approach, from a full-scale, finite-element-method-based time-domain 3-D solution of the heat equation. The electrothermal model, validated against dc, pulsed dc, -parameter and large-signal nonlinear measurements, is exploited to assess the impact of thermal memory effects on the device RF performances. In particular, the model allows for a detailed analysis and interpretation of the thermal memory effects on intermodulation distortion. Finally, the proposed approach enables to analyze such features for different thermal mountings, thus providing useful indications for technology assessment.

[1]  J. Rathmell,et al.  Broad-band characterization of FET self-heating , 2005, IEEE Transactions on Microwave Theory and Techniques.

[2]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[3]  M. Germain,et al.  Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design , 2006, IEEE Transactions on Electron Devices.

[4]  Manfred Berroth,et al.  Advanced large-signal modeling of GaN-HEMTs , 2002, Proceedings. IEEE Lester Eastman Conference on High Performance Devices.

[5]  Umesh K. Mishra,et al.  Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB , 2001 .

[6]  W. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985 .

[7]  B. Bunz,et al.  Accurate Large-Signal Modeling of AlGaN-GaN HEMT Including Trapping and Self-Heating Induced Dispersion , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[8]  K. Webb,et al.  A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC , 2004, IEEE Transactions on Microwave Theory and Techniques.

[9]  T. Chow,et al.  SiC Power Devices , 1996 .

[10]  P. Colantonio,et al.  Linearity and efficiency optimisation in microwave power amplifier design , 2007, 2007 European Microwave Conference.

[11]  Joy Laskar,et al.  Study of self-heating effects, temperature-dependent modeling, and pulsed load-pull measurements on GaN HEMTs , 2001 .

[12]  V. Camarchia,et al.  Evaluation of GaN HEMT Technology Development Through Nonlinear Characterization , 2006, 2006 IEEE International Symposium on Power Semiconductor Devices and IC's.

[13]  G. Ghione,et al.  Thermal design of power GaN FETs in microstrip and coplanar MMICs , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[14]  A. J. Panks,et al.  Thermal transients in microwave active devices and their influence on intermodulation distortion , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[15]  R. Quere,et al.  From 3D thermal simulation of HBT devices to their thermal model integration into circuit simulators via Ritz vectors reduction technique , 2002, ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258).

[16]  Anthony E. Parker,et al.  Comments on "Ill conditioning in self-heating FET models" [and reply] , 2002 .

[17]  Hassene Mnif,et al.  Modeling the self-heating effect in SiGe HBTs , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[18]  Luca Selmi,et al.  Modeling temperature effects in the DC I-V characteristics of GaAs MESFET's , 1993 .

[19]  I. Angelov,et al.  Extensions of the Chalmers nonlinear HEMT and MESFET model , 1996 .

[20]  P. Romanini,et al.  Experimental validation of GaN HEMTs thermal management by using photocurrent measurements , 2006, IEEE Transactions on Electron Devices.

[21]  Marco Peroni,et al.  Fabrication and nonlinear characterization of GaN HEMTs on SiC and sapphire for high‐power applications , 2006 .

[22]  J.L. Cazaux,et al.  Optimised thermal and microwave packaging for wide-band gap transistors: diamond & flip chip , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[23]  Timo Rahkonen,et al.  Measurement technique for characterizing memory effects in RF power amplifiers , 2001 .

[24]  E. Kohn,et al.  Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon , 2005, IEEE Transactions on Electron Devices.

[25]  Giovanni Ghione,et al.  Physics-based electron device modelling and computer-aided MMIC design , 1992 .

[26]  R. Quere,et al.  Pulse characterization of trapping and thermal effects of microwave GaN power FETs , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[27]  K. Joshin,et al.  Thermal and source bumps utilizing carbon nanotubes for flip-chip high power amplifiers , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[28]  S.A. Maas Ill conditioning in self-heating FET models , 2002, IEEE Microwave and Wireless Components Letters.

[29]  I. Hunter,et al.  Coupled electrothermal, electromagnetic, and physical modeling of microwave power FETs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[30]  M. Schetzen,et al.  Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.