Modeling Directional Brightness Temperature of the Winter Wheat Canopy at the Ear Stage

The ear is the top layer of mature wheat and has very different geometric and thermal characteristics from that of leaves. Compared to the directional brightness temperature (DBT) of wheat canopy without ears, the DBT at the ear stage has specific features, and the ear effects could not be explained by previous models. This paper proposes a hybrid geometric optical and radiative transfer model to reveal the combined influences of the geometric structure of ears and leaf; the temperature distribution of ear, leaf, and soil; and the Sun-target-sensor geometry on the canopy DBT. The soil, leaf, and ear layers are taken into account in the model so it is named as the Soil Leaf Ear Combined (SLEC) DBT model. We compare the model prediction with the field measurement data. The results show that the new SLEC DBT model can simulate the DBT of wheat at the ear stage with an accuracy of 0.78 K.

[1]  Wout Verhoef,et al.  A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data , 2003 .

[2]  Allen Hope,et al.  Tersail: A numerical model for combined analysis of vegetation canopy bidirectional reflectance and thermal emissions☆ , 1988 .

[3]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .

[4]  H. Cui Thermal bidirectional gap probability model for row crop canopies and validation , 2005 .

[5]  Albert Olioso,et al.  Using directional TIR measurements and 3D simulations to assess the limitations and opportunities of water stress indices , 2004 .

[6]  José A. Sobrino,et al.  Experimental system for the study of the directional thermal emission of natural surfaces , 2004 .

[7]  Albert Olioso,et al.  Using multidirectional thermography to characterize water status of cotton , 2003 .

[8]  Jindi Wang,et al.  Modeling directional effects from nonisothermal land surfaces in wideband thermal infrared measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Xiao Qing A Radiation Transfer Model to Predict Canopy Radiation in Thermal Infrared Band , 2003 .

[10]  Zhao-Liang Li,et al.  Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation , 2004 .

[11]  Yann Kerr,et al.  Directional effect on radiative surface temperature measurements over a semiarid grassland site , 2001 .

[12]  T. Brakke,et al.  A model for inferring canopy and underlying soil temperatures from multi-directional measurements , 1992 .

[13]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[14]  José A. Sobrino,et al.  Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface , 1990 .

[15]  R D Jackson,et al.  Plant canopy information extraction from composite scene reflectance of row crops. , 1979, Applied optics.

[16]  A. Strahler,et al.  Scale effects and scaling-up by geometric-optical model , 1999 .

[17]  J. Lagouarde,et al.  Experimental study of brightness surface temperature angular variations of maritime pine (Pinus pinaster) stands. , 2000 .

[18]  David L.B. Jupp,et al.  DIRECTIONAL RADIANCE AND EMISSIVITY MEASUREMENT MODELS FOR REMOTE SENSING OF THE SURFACE ENERGY BALANCE , 1998 .

[19]  Alan H. Strahler,et al.  Modeling bidirectional reflectance of forests and woodlands using boolean models and geometric optics , 1990 .

[20]  Daniel S. Kimes,et al.  Remote Sensing of Temperature Profiles in Vegetation Canopies Using Multiple View Angles And Inversion Techniques , 1981, IEEE Transactions on Geoscience and Remote Sensing.

[21]  W. Kustas,et al.  A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e , 1997 .

[22]  Bruno Monteny,et al.  Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the kB−1 parameter , 1997 .

[23]  Catherine Ottlé,et al.  Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements , 1997 .

[24]  José A. Sobrino,et al.  Canopy directional emissivity: Comparison between models , 2005 .

[25]  Wenjie Fan,et al.  A bi-directional gap model for simulating the directional thermal radiance of row crops , 2002 .

[26]  U KyawThaPaw,et al.  Development of models for thermal infrared radiation above and within plant canopies , 1992 .

[27]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[28]  J. Norman,et al.  Terminology in thermal infrared remote sensing of natural surfaces , 1995 .

[29]  José A. Sobrino,et al.  Determination of frosts in orange groves from NOAA-9 AVHRR data , 1989 .

[30]  D. S. Kimes,et al.  Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques , 1983 .

[31]  Bruno Monteny,et al.  Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the kB−1 parameter , 1997 .

[32]  A. Colton Effective thermal parameters for a heterogeneous land surface , 1996 .

[33]  S. D.,et al.  Thermal IR exitance model of a plant canopy , .

[34]  J. P. Kerr,et al.  Effect of Viewing Angle on Canopy Temperature Measurements with Infrared Thermometers1 , 1967 .

[35]  M. P. Stoll,et al.  Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils , 1991 .

[36]  Christophe François,et al.  The potential of directional radiometric temperatures for monitoring soil and leaf temperature and soil moisture status , 2002 .

[37]  Lee K. Balick,et al.  Modeling directional thermal radiance from a forest canopy , 1989 .

[38]  J. Smith,et al.  Directional Thermal Infrared Exitance Distributions of a Deciduous Forest in Summer , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[39]  R. D. Jackson,et al.  View angle effects in the radiometric measurement of plant canopy temperatures , 1980 .

[40]  D. S. Kimes,et al.  Effects of vegetation canopy structure on remotely sensed canopy temperatures. [inferring plant water stress and yield] , 1979 .

[41]  J. Norman,et al.  Radiative Transfer in an Array of Canopies1 , 1983 .

[42]  Alan H. Strahler,et al.  Study on thermal infrared emission directionality over crop canopies with TIR camera imagery , 2000 .

[43]  M. S. Moran,et al.  Ground and aircraft infrared observations over a partially-vegetated area , 1990 .

[44]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[45]  José A. Sobrino,et al.  Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard , 1990 .

[46]  Ruru Deng,et al.  Retrieve component temperature for wheat field with ASTER image , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[47]  José A. Sobrino,et al.  A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies , 1992 .

[48]  Jindi Wang,et al.  Thermal bidirectional gap probability model for row crop canopies and validation , 2003 .

[49]  Xingfa Gu,et al.  Modeling directional brightness temperature over a maize canopy in row structure , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[50]  A. Strahler,et al.  Geometric-Optical Modeling of a Conifer Forest Canopy , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[51]  J. Otterman,et al.  Longwave emission from a plant/soil surface as a function of the view direction : dependence on the canopy architecture , 1999 .

[52]  Daniel S. Kimes,et al.  Directional radiometric measurements of row-crop temperatures , 1983 .

[53]  R. A. Sutherland,et al.  Significance of Vegetation in Interpreting Thermal Radiation from a Terrestrial Surface , 1977 .