Existential Quantification as Incremental SAT
暂无分享,去创建一个
Jörg Brauer | Andy King | Jael Kriener | A. King | Jörg Brauer | J. Kriener
[1] Andy King,et al. Widening ROBDDs with Prime Implicants , 2006, TACAS.
[2] R. Read. Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .
[3] Michael S. Hsiao,et al. Efficient preimage computation using a novel success-driven ATPG , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.
[4] Helmut Veith,et al. 25 Years of Model Checking - History, Achievements, Perspectives , 2008, 25 Years of Model Checking.
[5] Albert Oliveras,et al. SMT Techniques for Fast Predicate Abstraction , 2006, CAV.
[6] Andy King,et al. Range and Set Abstraction using SAT , 2010, Electron. Notes Theor. Comput. Sci..
[7] Rajeev Alur,et al. A Temporal Logic of Nested Calls and Returns , 2004, TACAS.
[8] Roberto Bruttomesso,et al. The MathSAT 4 SMT Solver ( Tool Paper ) , 2008 .
[9] Robert Moran. Everyone a winner. , 1997, Nursing standard (Royal College of Nursing (Great Britain) : 1987).
[10] Shuvendu K. Lahiri,et al. A Symbolic Approach to Predicate Abstraction , 2003, CAV.
[11] Jörg Brauer,et al. Automatic Abstraction for Intervals Using Boolean Formulae , 2010, SAS.
[12] Bastian Schlich,et al. Model checking of software for microcontrollers , 2010, TECS.
[13] Marco Roveri,et al. Computing Predicate Abstractions by Integrating BDDs and SMT Solvers , 2007, Formal Methods in Computer Aided Design (FMCAD'07).
[14] Kenneth L. McMillan,et al. Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.
[15] Igor L. Markov,et al. Faster SAT and smaller BDDs via common function structure , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).
[16] Zijiang Yang,et al. SAT-Based Image Computation with Application in Reachability Analysis , 2000, FMCAD.
[17] Randal E. Bryant,et al. A View from the Engine Room: Computational Support for Symbolic Model Checking , 2008, 25 Years of Model Checking.
[18] Cormac Flanagan,et al. Predicate abstraction for software verification , 2002, POPL '02.
[19] David Monniaux,et al. Quantifier Elimination by Lazy Model Enumeration , 2010, CAV.
[20] S. Genaim,et al. Modeling Secure Information Flow with Boolean Functions , 2004 .
[21] David A. Plaisted,et al. A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..
[22] Olivier Coudert,et al. Implicit and incremental computation of primes and essential primes of Boolean functions , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.
[23] Randal E. Bryant,et al. Boolean Analysis of MOS Circuits , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[24] Christopher Umans. The Minimum Equivalent DNF Problem and Shortest Implicants , 2001, J. Comput. Syst. Sci..
[25] Edmund M. Clarke,et al. Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..
[26] Hassen Saïdi,et al. Construction of Abstract State Graphs with PVS , 1997, CAV.
[27] Archie Blake. Canonical expressions in Boolean algebra , 1938 .
[28] Daniel Kroening,et al. Ranking function synthesis for bit-vector relations , 2010, Formal Methods Syst. Des..
[29] Helmut Veith,et al. SAT Based Predicate Abstraction for Hardware Verification , 2003, SAT.
[30] Natarajan Shankar,et al. Abstract and Model Check While You Prove , 1999, CAV.
[31] Daniel Kroening,et al. A SAT-based algorithm for reparameterization in symbolic simulation , 2004, Proceedings. 41st Design Automation Conference, 2004..
[32] John S. Schlipf,et al. Extending Existential Quantification in Conjunctions of BDDs , 2006, J. Satisf. Boolean Model. Comput..
[33] James H. Kukula,et al. Checking satisfiability of a conjunction of BDDs , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[34] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[35] Vasco M. Manquinho,et al. Prime implicant computation using satisfiability algorithms , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.
[36] Kim Marriott,et al. Two Classes of Boolean Functions for Dependency Analysis , 1998, Sci. Comput. Program..
[37] David L. Dill,et al. Experience with Predicate Abstraction , 1999, CAV.
[38] Niklas Sörensson,et al. Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..
[39] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[40] Fabio Somenzi,et al. CirCUs: A Hybrid Satisfiability Solver , 2004, SAT.
[41] Jörg Brauer,et al. Approximate Quantifier Elimination for Propositional Boolean Formulae , 2011, NASA Formal Methods.
[42] Willard Van Orman Quine,et al. A Way to Simplify Truth Functions , 1955 .