Hydrophobic cluster analysis predicts an amino-terminal domain of varicella-zoster virus open reading frame 10 required for transcriptional activation.

Varicella-zoster virus open reading frame 10 (ORF10) protein, the homolog of the herpes simplex virus protein VP16, can transactivate immediate-early promoters from both viruses. A protein sequence comparison procedure termed hydrophobic cluster analysis was used to identify a motif centered at Phe-28, near the amino terminus of ORF10, that strongly resembles the sequence of the activating domain surrounding Phe-442 of VP16. With a series of GAL4-ORF10 fusion proteins, we mapped the ORF10 transcriptional-activation domain to the amino-terminal region (aa 5-79). Extensive mutagenesis of Phe-28 in GAL4-ORF10 fusion proteins demonstrated the importance of an aromatic or bulky hydrophobic amino acid at this position, as shown previously for Phe-442 of VP16. Transactivation by the native ORF10 protein was abolished when Phe-28 was replaced by Ala. Similar amino-terminal domains were identified in the VP16 homologs of other alphaherpesviruses. Hydrophobic cluster analysis correctly predicted activation domains of ORF10 and VP16 that share critical characteristics of a distinctive subclass of acidic activation domains.