Three-dimensional oligotrophic ecosystem models driven by physical forcing: the Mediterranean Sea case

Abstract An analysis of existing biochemical datasets, collected using different measurements methods, confirms peculiarities of the Mediterranean Sea, such as its oligotrophy, easterly decreasing gradients, and influence of hydrodynamics on the biochemical patterns. Thus assessment of this marine environment requires a model based on a three-dimensional characterization of the ecosystem dynamics. The model, which covers all the Mediterranean basin, conceptually takes into accounts the cycles of nitrogen and phosphorus through the detritus and food chains. It includes as major compartments dissolved inorganic nutrients, two pools of phytoplankton producers, one of zooplankton, and detritus. Dynamic of dissolved oxygen is also simulated. Simulations are presented and results from this conceptualization are reported.

[1]  F. Wilkerson,et al.  Nutrient sources and primary production in the Eastern Mediterranean , 1988 .

[2]  B. Peterson,et al.  Particulate organic matter flux and planktonic new production in the deep ocean , 1979, Nature.

[3]  M. Silver,et al.  Primary production, sinking fluxes and the microbial food web , 1988 .

[4]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[5]  S. Levitus,et al.  Distribution of nitrate, phosphate and silicate in the world oceans , 1993 .

[6]  Thomas E. Maloney,et al.  Modeling the eutrophication process , 1973 .

[7]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[8]  H. Minas,et al.  Influence des conditions hivernales sur les productions phyto- et zooplanctoniques en Méditerranée nord-occidentale. I. Structures hydrologiques et distribution des sels nutritifs , 1972 .

[9]  P. Corre,et al.  Re-evaluation of the nutrient exchanges in the strait of gibraltar , 1988 .

[10]  A. Crise,et al.  A seasonal three-dimensional study of the nitrogen cycle in the Mediterranean Sea:: Part II. Verification of the energy constrained trophic model , 1999 .

[11]  James E. Cloern,et al.  An empirical model of the phytoplankton chlorophyll : carbon ratio‐the conversion factor between productivity and growth rate , 1995 .

[12]  M. Moraitou-Apostolopoulou,et al.  Mediterranean Marine Ecosystems , 1985 .

[13]  A. Crise,et al.  A seasonal three-dimensional study of the nitrogen cycle in the Mediterranean Sea: Part I. Model implementation and numerical results , 1998 .

[14]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[15]  G. Jacques,et al.  Influence des conditions hivernales sur les productions phyto- et zooplanctoniques en Méditerranée Nord-Occidentale. II. Biomasse et production phytoplanctonique , 1973 .

[16]  F. Muller‐Karger,et al.  The effects of temporal variability of mixed layer depth on primary productivity around Bermuda , 1994 .

[17]  John H. Steele,et al.  ENVIRONMENTAL CONTROL OF PHOTOSYNTHESIS IN THE SEA , 1962 .

[18]  Marco Zavatarelli,et al.  Climatological biogeochemical characteristics of the Adriatic Sea , 1998 .

[19]  R. Margalef Environmental Control of the Mesoscale Distribution of Primary Producers and its Bearing to Primary Production in the Western Mediterranean , 1985 .

[20]  S. Poulet,et al.  Etude des spectres de taille des particules en suspension dans l'estuaire et le golfe du Saint-Laurent. I. Variations spatiales , 1986 .

[21]  S. Gorshkov,et al.  World ocean atlas , 1976 .