ON WELL-POSEDNESS OF DIFFERENCE SCHEMES FOR ABSTRACT PARABOLIC EQUATIONS IN L P ([0,T]; E) SPACES

ABSTRACT This paper is devoted to the numerical analysis of abstract parabolic differential equations in -spaces. The presentation uses general approximation scheme and is based on semigroup theory and a functional analysis approach. For the solutions of the first and second order of accuracy difference schemes, the almost coercive inequality in spaces with the factor are obtained. In the case of UMD space E n we establish a coercive inequality in under the condition of R-boundedness.

[1]  R. Grigorieff,et al.  Diskrete Approximation von Eigenwertproblemen , 1975 .

[2]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[3]  Tosio Kato,et al.  High-Accuracy Stable Difference Schemes for Well-Posed Initial-Value Problems , 1979 .

[4]  R. S. Varga,et al.  On the zeros and poles of Padé approximants toez. III , 1978 .

[5]  César Palencia de Lara A stability result for sectorial operators in Banach Spaces , 1991 .

[6]  Rolf Dieter Grigorieff Diskrete Approximation von Eigenwertproblemen , 1975 .

[7]  Allaberen Ashyralyev,et al.  COERCIVE SOLVABILITY OF THE NONLOCAL BOUNDARY VALUE PROBLEM FOR PARABOLIC DIFFERENTIAL EQUATIONS , 2001 .

[8]  Allaberen Ashyralyev,et al.  Well-posed solvability of the Cauchy problem for difference equations of parabolic type , 1995 .

[9]  Hiroshi Fujita,et al.  On the finite element method for parabolic equations, I; approximation of holomorphic semi-groups1) , 1976 .

[10]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .

[11]  Sönke Blunck,et al.  Maximal regularity of discrete and continuous time evolution equations , 2001 .

[12]  O. Nevanlinna On the growth of the resolvent operators for power bounded operators , 1997 .

[13]  R. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[14]  Lutz Weis,et al.  Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .

[15]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[16]  C. Palencia,et al.  A stability result for sectorial operators in branch spaces , 1993 .

[17]  Resolvent conditions and powers of operators , 2001 .

[18]  E. Davies,et al.  SEMIGROUPS OF LINEAR OPERATORS AND APPLICATIONS (Oxford Mathematical Monographs) , 1986 .

[19]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. II , 1971 .

[20]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[21]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[22]  P. Sobolevskiĭ,et al.  THE COERCIVE SOLVABILITY OF DIFFERENCE EQUATIONS , 1971 .

[23]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[24]  S. Krein,et al.  Linear Differential Equations in Banach Space , 1972 .

[25]  Stig Larsson,et al.  The stability of rational approximations of analytic semigroups , 1993 .

[26]  Baillon's Theorem on Maximal Regularity , 1992 .

[27]  A. A. Samarskiĭ,et al.  Méthodes aux différences pour équations elliptiques , 1978 .

[28]  V. Thomée,et al.  ON RATIONAL APPROXIMATIONS OF SEMIGROUPS , 1979 .

[29]  Approximation theory for semi-groups of linear operators and its application to approximation of wave equations , 1975 .

[30]  L. Weis,et al.  Operator theoretic properties of semigroups in terms of their generators , 2001 .

[31]  R. Varga,et al.  Geometric convergence to e−z by rational functions with real poles , 1975 .

[32]  Difference schemes of optimal type for an approximate solution of parabolic equations (Banach case) , 1981 .

[33]  G. Vainikko,et al.  Funktionalanalysis der Diskretisierungsmethoden , 1976 .

[34]  N. Kalton,et al.  A solution to the problem of $L^p-$maximal regularity , 1999, math/9910122.

[35]  R. Grigorieff,et al.  Diskrete Approximation von Eigenwertproblemen , 1975 .

[36]  Stable solvability of Padé difference schemes for parabolic equations in Hölder spaces , 1992 .

[37]  A. Iacob,et al.  Well-Posedness of Parabolic Difference Equations , 1994 .

[38]  C. Merdy Counterexamples on \(L_p\)-maximal regularity , 1999 .

[39]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory , 1995 .

[40]  G. Vainikko,et al.  Approximative methods for nonlinear equations (two approaches to the convergence problem) , 1978 .

[41]  Richard S. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[42]  Tosio Kato Perturbation theory for linear operators , 1966 .

[43]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[44]  Y. Lyubich Spectral localization, power boundedness and invariant subspaces under Ritt's type condition , 1999 .