Multiobjective Optimization for Space Mission Design Problems

In a variety of applications in industry and finance the problem arises that several objective functions have to be optimized concurrently leading to a multiobjective optimization problem (MOP). For instance, in space mission design, which we address in this chapter, two typical important objectives are the time of flight (TOF) of the spacecraft to reach its destiny, and the cost of the mission (e.g., measured by the change in velocity v, which has a direct impact on the fuel consumption and hence also on the overall cost of the mission). As these objectives are typically contradicting—the ‘cheapest’ trajectory is certainly not the fastest one and vice versa—it comes as no surprise that the solution set, the so-called Pareto set, does not consist of one single solution (as for classical scalar optimization problems (SOPs)). Instead, it forms a (k − 1)-dimensional object where k is the number of objectives involved in the MOP. In this chapter, we introduce the concept of multiobjective optimization (MOO) and state some theoretical background. Further, we present the state-ofthe-art of both deterministic and stochastic search methods to compute a finite size representation of the Pareto set, respectively its image, the Pareto front. Furthermore, we discuss scenarios in which MOO has been considered for MOPs related to space mission design. The remainder of this chapter is organized as follows: In Sec. II, we give a brief introduction to MOO. In Sec. III, we state the most commonly used mathematical programming techniques for MOPs and in Sec. IV we give an overview of evolutionary MOO algorithms. In Sec. V, we briefly summarize some research works for which MOO techniques have been used to solve space mission design problems. Finally, in Sec. VI, we discuss potential future research trends in this field.

[1]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[2]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[3]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[4]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[5]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[6]  Kay Chen Tan,et al.  A distributed Cooperative coevolutionary algorithm for multiobjective optimization , 2006, IEEE Transactions on Evolutionary Computation.

[7]  Peter A. N. Bosman,et al.  On Gradients and Hybrid Evolutionary Algorithms for Real-Valued Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[8]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[9]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[10]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[11]  Enrique Alba,et al.  Cellular genetic algorithms , 2014, GECCO.

[12]  Honggang Wang,et al.  Zigzag Search for Continuous Multiobjective Optimization , 2013, INFORMS J. Comput..

[13]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[14]  Kathrin Klamroth,et al.  Introducing oblique norms into multiple criteria programming , 2002, J. Glob. Optim..

[15]  Yacov Y. Haimes,et al.  Approach to performance and sensitivity multiobjective optimization: The goal attainment method , 1975 .

[16]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[17]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[18]  Kathrin Klamroth,et al.  An augmented weighted Tchebycheff method with adaptively chosen parameters for discrete bicriteria optimization problems , 2012, Comput. Oper. Res..

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[21]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[22]  Kyriakos C. Giannakoglou,et al.  Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes , 2009 .

[23]  Kay Chen Tan,et al.  Multi-Objective Memetic Algorithms , 2009 .

[24]  S. Ober-Blöbaum,et al.  A multi-objective approach to the design of low thrust space trajectories using optimal control , 2009 .

[25]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[26]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[27]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[28]  Kathrin Klamroth,et al.  Unbiased approximation in multicriteria optimization , 2003, Math. Methods Oper. Res..

[29]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[30]  Bernhard Sendhoff,et al.  Crawling along the Pareto front: tales from the practice , 2005, 2005 IEEE Congress on Evolutionary Computation.

[31]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[33]  Martin W. Lo,et al.  Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels , 2011 .

[34]  Massimiliano Vasile,et al.  Multi-agent collaborative search with Tchebycheff decomposition and monotonic basin hopping steps , 2012 .

[35]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[36]  Singiresu S Rao,et al.  Interval-based optimization of aircraft wings under landing loads , 2009 .

[37]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[38]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[39]  Jörg Fliege,et al.  Gap-free computation of Pareto-points by quadratic scalarizations , 2004, Math. Methods Oper. Res..

[40]  Tien-Tsin Wong,et al.  Parallel evolutionary algorithms on graphics processing unit , 2005, 2005 IEEE Congress on Evolutionary Computation.

[41]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[42]  Y. Lei,et al.  Optimal Multi-Objective Linearized Impulsive Rendezvous , 2007 .

[43]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[44]  Roberta Parreiras,et al.  Interval Robust Multi-objective Algorithm , 2009 .

[45]  Peter A. N. Bosman,et al.  Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.

[46]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[47]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[48]  Yasuo Fujii,et al.  Multicriterion optimization using interval analysis , 1990, Computing.

[49]  C. Hsu,et al.  Cell-To-Cell Mapping A Method of Global Analysis for Nonlinear Systems , 1987 .

[50]  Sanyou Zeng,et al.  An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints , 2004, Evolutionary Computation.

[51]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[52]  Joel N. Morse,et al.  Reducing the size of the nondominated set: Pruning by clustering , 1980, Comput. Oper. Res..

[53]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[54]  H. Fawcett Manual of Political Economy , 1995 .

[55]  Matthew A. Vavrina A hybrid genetic algorithm approach to global low-thrust trajectory optimization , 2008 .

[56]  Oliver Schütze,et al.  On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems , 2005, Practical Approaches to Multi-Objective Optimization.

[57]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[58]  Stephen Kemble,et al.  Preliminary space mission design under uncertainty , 2010 .

[59]  Tapabrata Ray,et al.  Constrained many-objective optimization: A way forward , 2009, 2009 IEEE Congress on Evolutionary Computation.

[60]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[61]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[62]  Massimiliano Vasile,et al.  Robust Preliminary Space Mission Design under Uncertainty , 2010 .

[63]  Xiaodong Li,et al.  Reference point based multi-objective optimization through decomposition , 2012, 2012 IEEE Congress on Evolutionary Computation.

[64]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[65]  Johannes Jahn,et al.  Multiobjective Search Algorithm with Subdivision Technique , 2006, Comput. Optim. Appl..

[66]  S. Ober-Blöbaum,et al.  Handling high-dimensional problems with multi-objective continuation methods via successive approximation of the tangent space , 2012 .

[67]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[68]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[69]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[70]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[71]  Pekka Korhonen,et al.  A pareto race , 1988 .

[72]  Carlos A. Coello Coello,et al.  The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms , 2012, EVOLVE.

[73]  Enrico Miglierina,et al.  Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization , 2008, Eur. J. Oper. Res..

[74]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[75]  Bernard Roy,et al.  Problems and methods with multiple objective functions , 1971, Math. Program..

[76]  Guo-Jin Tang,et al.  Optimal Multi-Objective Nonlinear Impulsive Rendezvous , 2007 .

[77]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[78]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[79]  Massimiliano Vasile,et al.  Approximate Solutions in Space Mission Design , 2008, PPSN.

[80]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[81]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[82]  Bernhard Sendhoff,et al.  Knowledge Extraction from Aerodynamic Design Data and its Application to 3D Turbine Blade Geometries , 2008, J. Math. Model. Algorithms.

[83]  Massimiliano Vasile,et al.  Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design , 2011, ArXiv.

[84]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[85]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[86]  J. Marsden,et al.  Dynamical Systems, the Three-Body Problem and Space Mission Design , 2009 .

[87]  Carlos A. Coello Coello,et al.  A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[88]  Yousef Naranjani,et al.  Simple cell mapping method for multi-objective optimal feedback control design , 2013, International Journal of Dynamics and Control.

[89]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[90]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[91]  J. Marsden,et al.  Trajectory Design Combining Invariant Manifolds with Discrete Mechanics and Optimal Control , 2012 .

[92]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[93]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[94]  Mario Köppen,et al.  Many-Objective Particle Swarm Optimization by Gradual Leader Selection , 2007, ICANNGA.

[95]  Oliver Schütze,et al.  Set Oriented Methods for the Numerical Treatment of Multiobjective Optimization Problems , 2013, EVOLVE.

[96]  Oliver Schütze,et al.  Computing the Set of Approximate Solutions of a Multi-objective Optimization Problem by Means of Cell Mapping Techniques , 2013 .

[97]  Massimiliano Vasile,et al.  Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design , 2011, J. Aerosp. Comput. Inf. Commun..

[98]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[99]  Anastassios E. Petropoulos,et al.  Increamenting multi-objective evolutionary algorithms: Performance studies and comparisons , 2001 .

[100]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[101]  Massimiliano Vasile Robust Mission Design Through Evidence Theory and Multiagent Collaborative Search , 2005, Annals of the New York Academy of Sciences.

[102]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[103]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[104]  Shigeru Obayashi,et al.  Data Mining for Aerodynamic Design Space , 2005, J. Aerosp. Comput. Inf. Commun..

[105]  Gabriele Eichfelder,et al.  Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.

[106]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[107]  Arthur P. Dempster,et al.  New Methods for Reasoning Towards PosteriorDistributions Based on Sample Data , 1966, Classic Works of the Dempster-Shafer Theory of Belief Functions.