Further Results on the Uniform Observability of Discrete-Time Nonlinear Systems

In this technical note, the relation between notions of uniform observability of discrete-time nonlinear systems based on injectivity of an observation map (window), the full-rankness of its Jacobian, and a K-function is investigated. It is proven that a system is uniformly observable in the sense of injectivity of the observation map (together with the full-rankness of its Jacobian) if and only if it is so in some K-function senses.

[1]  S. Benamor,et al.  A Luenberger-like observer for discrete-time nonlinear systems , 1997, 1997 European Control Conference (ECC).

[2]  C∞ and L∞ Observability of Single-Input C∞-Systems , 2001 .

[3]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[4]  Iasson Karafyllis,et al.  On the Observer Problem for Discrete-Time Control Systems , 2007, IEEE Transactions on Automatic Control.

[5]  X. Xia,et al.  Semi-global finite-time observers for nonlinear systems , 2008, Autom..

[6]  Robert Engel,et al.  Nonlinear observers for autonomous Lipschitz continuous systems , 2003, IEEE Trans. Autom. Control..

[7]  Shigeru Hanba,et al.  On the “Uniform” Observability of Discrete-Time Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[8]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[9]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[10]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[11]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[12]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[13]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[14]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[15]  Hassan Hammouri,et al.  State equivalence of discrete-time nonlinear control systems to state affine form up to input/output injection , 1998 .

[16]  Domenico D'Alessandro,et al.  Observability and Forward–Backward Observability of Discrete-Time Nonlinear Systems , 2002, Math. Control. Signals Syst..

[17]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[18]  Kurt Schlacher,et al.  On the observability of discrete-time dynamic systems - A geometric approach , 2008, Autom..

[19]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[20]  Mazen Alamir,et al.  Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..

[21]  F. Allgöwer,et al.  Output feedback stabilization of constrained systems with nonlinear predictive control , 2003 .

[22]  Wei-bing Gao,et al.  On exponential observers for nonlinear systems , 1988 .

[23]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[24]  Wei Lin,et al.  Remarks on linearization of discrete-time autonomous systems and nonlinear observer design , 1995 .

[25]  Wei Kang,et al.  Moving horizon numerical observers of nonlinear control systems , 2006, IEEE Transactions on Automatic Control.

[26]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[27]  Dorothée Normand-Cyrot,et al.  On the observer design in discrete-time , 2003, Syst. Control. Lett..