MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit

[1]  H. Horvitz,et al.  Heterochronic mutants of the nematode Caenorhabditis elegans. , 1984, Science.

[2]  Y. Pekarsky,et al.  The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. , 2007, Best practice & research. Clinical haematology.

[3]  Jianquan Wang,et al.  Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells , 2009, Nucleic acids research.

[4]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[5]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[6]  A. Mulder,et al.  Megakaryoblastic differentiation of proerythroblastic K562 cell-line cells. , 1984, Leukemia research.

[7]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[8]  P. Lu,et al.  Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4–AKT–ATP‐binding cassette G2 pathway , 2010, Hepatology.

[9]  K. Mimori,et al.  Comprehensive Analysis of the Clinical Significance of Inducing Pluripotent Stemness-Related Gene Expression in Colorectal Cancer Cells , 2009, Annals of Surgical Oncology.

[10]  D. Maharaj,et al.  Changes in endogenous TPO levels during mobilization chemotherapy are predictive of CD34+ megakaryocyte progenitor yield and identify patients at risk of delayed platelet engraftment post-PBPC transplant , 1999, Bone Marrow Transplantation.

[11]  Jun Guo,et al.  Expression and activation of the reprogramming transcription factors. , 2009, Biochemical and biophysical research communications.

[12]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[13]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[14]  John Bracht,et al.  Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. , 2004, RNA.

[15]  N. Ahn,et al.  Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase , 1997, Molecular and cellular biology.

[16]  N. Perrimon,et al.  Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. , 2003, Developmental biology.

[17]  R. Sachidanandam,et al.  A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells , 2007 .

[18]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[19]  F. Slack,et al.  The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. , 2003, Developmental biology.

[20]  Patricia Soteropoulos,et al.  MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. , 2007, Cancer research.

[21]  R. Alitalo Induced differentiation of K562 leukemia cells: a model for studies of gene expression in early megakaryoblasts. , 1990, Leukemia research.

[22]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[23]  Ligang Wu,et al.  Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells , 2005, Molecular and Cellular Biology.

[24]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[25]  V. Ambros,et al.  The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. , 2002, Developmental biology.

[26]  F. Slack,et al.  let-7 microRNAs in development, stem cells and cancer. , 2008, Trends in molecular medicine.

[27]  H. Johnsen,et al.  Subsets of Cd34 + Hematopoietic Progenitors and Platelet Recovery after High Dose Chemotherapy and Peripheral Blood Stem Cell Transplantation , 2022 .

[28]  P. Rowley,et al.  Multipotent human hematopoietic cell line K562: lineage-specific constitutive and inducible antigens. , 1987, Leukemia research.

[29]  J. Lieberman,et al.  miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. , 2009, Blood.

[30]  P. Pedrazzoli,et al.  Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. , 1997, Blood.

[31]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[32]  S. Santoro,et al.  Induced cell surface expression of functional α2β1 integrin during megakaryocytic differentiation of K562 leukemic cells , 1992 .

[33]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[34]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[35]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[36]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[37]  John T. Powers,et al.  Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies , 2009, Nature Genetics.

[38]  R. Shivdasani,et al.  Megakaryocytes and beyond: the birth of platelets , 2003, Journal of thrombosis and haemostasis : JTH.