Optimization of time‐variable‐parameter model for data‐based soft sensor of industrial debutanizer

[1]  M. V. Kulikova,et al.  Improved Discrete-Time Kalman Filtering within Singular Value Decomposition , 2016, ArXiv.

[2]  Bogdan Gabrys,et al.  Adaptive on-line prediction soft sensing without historical data , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[3]  Zhiqiang Ge,et al.  Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples , 2011 .

[4]  Hwan Hur,et al.  Unknown Input Observer-Based Filterings for Mobile Pedestrian Localization Using Wireless Sensor Networks , 2014, IEEE Sensors Journal.

[5]  P. Young,et al.  Identification of non-linear stochastic systems by state dependent parameter estimation , 2001 .

[6]  Luigi Fortuna,et al.  Soft sensors for product quality monitoring in debutanizer distillation columns , 2005 .

[7]  Javad Poshtan,et al.  Kalman filter based sensor fault detection and identification in an electro-pump system , 2017, 2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA).

[8]  Kishalay Mitra,et al.  Modeling of an industrial wet grinding operation using data-driven techniques , 2006, Comput. Chem. Eng..

[9]  R. V. Jategaonkar,et al.  Aerodynamic Parameter Estimation from Flight Data Applying Extended and Unscented Kalman Filter , 2010 .

[10]  Hare Krishna Mohanta,et al.  Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network , 2016 .

[11]  Zhiqiang Ge,et al.  Active probabilistic sample selection for intelligent soft sensing of industrial processes , 2016 .

[12]  Zhizhong Mao,et al.  A fast monitoring method for multiple operating batch processes with incomplete modeling data types , 2015 .

[13]  Sirish L. Shah,et al.  Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant , 2006 .

[14]  Diego J. Pedregal,et al.  Environmental time series analysis and forecasting with the Captain toolbox , 2007, Environ. Model. Softw..

[15]  Denis Dochain,et al.  Enthalpy based modelling and design of asymptotic observers for chemical reactors , 2009, Int. J. Control.

[16]  Zhi-huan Song,et al.  Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes , 2014 .

[17]  Zhiqiang Ge,et al.  A comparative study of just-in-time-learning based methods for online soft sensor modeling , 2010 .

[18]  Zhiqiang Ge,et al.  Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA , 2015 .

[19]  Scott C. James,et al.  Comparative study of black-box and hybrid estimation methods in fed-batch fermentation , 2002 .

[20]  Weihua Gui,et al.  Probabilistic density-based regression model for soft sensing of nonlinear industrial processes , 2017 .

[21]  XuanLong Nguyen,et al.  Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis , 2013, Appl. Soft Comput..

[22]  Sanjeev S. Tambe,et al.  Soft-sensor development for fed-batch bioreactors using support vector regression , 2006 .

[23]  Rui Araújo,et al.  Genetic fuzzy system for data-driven soft sensors design , 2012, Appl. Soft Comput..

[24]  J. Qiao,et al.  A data-derived soft-sensor method for monitoring effluent total phosphorus , 2017 .

[25]  Manabu Kano,et al.  Development of soft-sensor using locally weighted PLS with adaptive similarity measure , 2013 .

[26]  Ali Reza Soleymani,et al.  Operation simulation of a recycled electrochemical ozone generator using artificial neural network , 2014 .

[27]  D. C. Taylor,et al.  Model selection and Akaike Information Criteria: An example from wine ratings and prices , 2014 .

[28]  Manabu Kano,et al.  Soft‐sensor development using correlation‐based just‐in‐time modeling , 2009 .

[29]  Mohd Azlan Hussain,et al.  A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant , 2017 .

[30]  Chonghun Han,et al.  A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns , 2000 .

[31]  Ping Wang,et al.  Online soft sensor design using local partial least squares models with adaptive process state partition , 2015 .

[32]  Nasser Mohamed Ramli,et al.  Composition Prediction of a Debutanizer Column using Equation Based Artificial Neural Network Model , 2014, Neurocomputing.

[33]  Yiqi Liu,et al.  Date-Driven Soft-Sensor Design for Biological Wastewater Treatment Using Deep Neural Networks and Genetic Algorithms , 2016 .

[34]  Saeid Nahavandi,et al.  Prediction interval-based neural network modelling of polystyrene polymerization reactor – A new perspective of data-based modelling , 2014 .

[35]  Xionglin Luo,et al.  Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method , 2016 .

[36]  Zhiqiang Ge,et al.  Active learning strategy for smart soft sensor development under a small number of labeled data samples , 2014 .

[37]  Miao Aimin,et al.  Neighborhood preserving regression embedding based data regression and its applications on soft sensor modeling , 2015 .

[38]  Bogdan Gabrys,et al.  Data-driven Soft Sensors in the process industry , 2009, Comput. Chem. Eng..

[39]  Yiqi Liu,et al.  Adaptive just-in-time and relevant vector machine based soft-sensors with adaptive differential evolution algorithms for parameter optimization , 2017 .

[40]  Manabu Kano,et al.  Inferential control of distillation compositions: selection of model and control configuration , 2001 .

[41]  Gerasimos Rigatos,et al.  Detection of Attacks Against Power Grid Sensors Using Kalman Filter and Statistical Decision Making , 2017, IEEE Sensors Journal.

[42]  Jafar Sadeghi,et al.  Data-driven soft sensor approach for online quality prediction using state dependent parameter models , 2017 .

[43]  Nenad Bolf,et al.  Soft sensor for continuous product quality estimation (in crude distillation unit) , 2011 .

[44]  Aida Mustapha,et al.  Crossover and mutation operators of genetic algorithms , 2017 .

[45]  Bogdan Gabrys,et al.  Adaptive Local Learning Soft Sensor for Inferential Control Support , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[46]  Fengqi Si,et al.  Multiple Sensor Validation for Natural Gas Combined Cycle Power Plants Based on Robust Input Training Neural Networks , 2017 .

[47]  Zhiqiang Ge,et al.  Robust supervised probabilistic principal component analysis model for soft sensing of key process variables , 2015 .

[48]  Xu Zhao,et al.  Nonlinear Real‐time Process Monitoring and Fault Diagnosis Based on Principal Component Analysis and Kernel Fisher Discriminant Analysis , 2007 .

[49]  Fan Miao,et al.  Adaptive Gaussian Mixture Model-Based Relevant Sample Selection for JITL Soft Sensor Development , 2014 .

[50]  Biao Huang,et al.  Design of inferential sensors in the process industry: A review of Bayesian methods , 2013 .

[51]  Abdul Rahman Mohamed,et al.  Neural networks for the identification and control of blast furnace hot metal quality , 2000 .

[52]  Salah Bouhouche,et al.  Inferential sensor-based adaptive principal components analysis of mould bath level for breakout defect detection and evaluation in continuous casting , 2015, Appl. Soft Comput..