Manganese(III)-containing Wells-Dawson sandwich-type polyoxometalates: comparison with their manganese(II) counterparts.

We present the synthesis and structural characterization, assessed by various techniques (FTIR, TGA, UV-vis, elemental analysis, single-crystal X-ray diffraction for three compounds, magnetic susceptibility, and electrochemistry) of five manganese-containing Wells-Dawson sandwich-type (WDST) complexes. The dimanganese(II)-containing complex, [Na(2)(H(2)O)(2)Mn(II)(2)(As(2)W(15)O(56))(2)](18-) (1), was obtained by reaction of MnCl(2) with 1 equiv of [As(2)W(15)O(56)](12-) in acetate medium (pH 4.7). Oxidation of 1 by Na(2)S(2)O(8) in aqueous solution led to the dimanganese(III) complex [Na(2)(H(2)O)(2)Mn(III)(2)(As(2)W(15)O(56))(2)](16-) (2), while its trimanganese(II) homologue, [Na(H(2)O)(2)Mn(II)(H(2)O)Mn(II)(2)(As(2)W(15)O(56))(2)](17-) (3), was obtained by addition of ca. 1 equiv of MnCl(2) to a solution of 1 in 1 M NaCl. The trimanganese(III) and tetramanganese(III) counterparts, [Mn(III)(H(2)O)Mn(III)(2)(As(2)W(15)O(56))(2)](15-) (4) and [Mn(III)(2)(H(2)O)(2)Mn(III)(2)(As(2)W(15)O(56))(2)](12-) (6), are, respectively, obtained by oxidation of aqueous solutions of 3 and [Mn(II)(2)(H(2)O)(2)Mn(II)(2)(As(2)W(15)O(56))(2)](16-) (5) by Na(2)S(2)O(8). Single-crystal X-ray analyses were carried out on 2, 3, and 4. BVS calculations and XPS confirmed that the oxidation state of Mn centers is +II for complexes 1, 3, and 5 and +III for 2, 4, and 6. A complete comparative electrochemical study was carried out on the six compounds cited above, and it was possible to observe the distinct redox steps Mn(IV/III) and Mn(III/II). Magnetization measurements, as a function of temperature, confirm the presence of antiferromagnetic interactions between the Mn ions in these compounds in all cases with the exception of compound 2.

[1]  Leroy Cronin,et al.  Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.

[2]  Yang-guang Li,et al.  Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties , 2010 .

[3]  J. Marrot,et al.  Rational Synthesis, Structure, Magnetism and Electrochemistry of Mixed Iron–Nickel‐Containing Wells–Dawson‐Fragment‐Based Sandwich‐Type Polyoxometalates , 2009 .

[4]  M. Dressel,et al.  Polyoxometalates: Fascinating structures, unique magnetic properties , 2009 .

[5]  Tianbo Liu,et al.  Synthesis of remarkably stabilized metal nanostructures using polyoxometalates , 2009 .

[6]  P. Kögerler,et al.  A polyoxometalate-based manganese carboxylate cluster. , 2008, Chemical communications.

[7]  R. Finke,et al.  The classic Wells-Dawson polyoxometalate, K6[alpha-P2W18O62].14H2O. Answering an 88 year-old question: what is its preferred, optimum synthesis? , 2008, Inorganic chemistry.

[8]  L. Cronin,et al.  Controlled assembly and solution observation of a 2.6 nm polyoxometalate 'super' tetrahedron cluster: [KFe12(OH)18(alpha-1,2,3-P2W15O56)4]29-. , 2007, Chemical communications.

[9]  Xinlong Wang,et al.  Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster. , 2007, Inorganic chemistry.

[10]  R. Thouvenot,et al.  Electrochemical and electrocatalytical investigations on the trimanganese sandwich complex [NaMn3(H2O)2(P2W15O56)2]17− , 2007 .

[11]  R. Thouvenot,et al.  Mixed‐Metal Dawson Sandwich Complexes: Synthesis, Spectroscopic Characterization and Electrochemical Behaviour of Na16[MIICo3(H2O)2(P2W15O56)2] (M = Mn, Co, Ni, Zn and Cd) , 2007 .

[12]  B. Keita,et al.  Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements , 2007 .

[13]  B. Krebs,et al.  The First Structurally Characterized Mn(III) Substituted Sandwich-type Polyoxotungstates , 2006 .

[14]  C. Hill,et al.  Structural and Electrochemical Studies of Dicupric Wells–Dawson Sandwich-Type Complexes , 2006 .

[15]  J. Marrot,et al.  Structural and magnetic properties of Mn(III) and Cu(II) tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states. , 2006, Chemistry.

[16]  L. Lezama,et al.  Inorganic-metalorganic hybrids based on copper(II)-monosubstituted Keggin polyanions and dinuclear copper(II)-oxalate complexes. Synthesis, X-ray structural characterization, and magnetic properties. , 2005, Inorganic chemistry.

[17]  F. Hussain,et al.  Some indium(III)-substituted polyoxotungstates of the Keggin and Dawson types , 2005 .

[18]  C. Hill,et al.  Synthesis, structural characterization, and electrocatalytic studies of αββα-(ZnIIOH2)2(FeIII)2(X2W15O56)214– (X = P or As) , 2005 .

[19]  C. Hill,et al.  Polyoxometalate-supported Y- and YbIII-hydroxo/oxo clusters from carbonate-assisted hydrolysis. , 2005, Chemistry.

[20]  C. Hill,et al.  Electron Transfer Behavior of Multi-Iron Sandwich-Type Polyoxometalates and Electrocatalytic Reduction Reactions , 2004 .

[21]  C. Hill,et al.  Lacunary Wells−Dawson Sandwich Complexes − Synthesis, Characterization, and Stability Studies of Multi-Iron Species , 2003 .

[22]  C. Hill,et al.  Manganous heteropolytungstates. Synthesis and heteroatom effects in Wells–Dawson-derived sandwich complexes , 2003 .

[23]  R. Contant,et al.  THE HETEROPOLYOXOTUNGSTATES: RELATIONSHIPS BETWEEN ROUTES OF FORMATION AND STRUCTURES , 2003 .

[24]  C. Hill,et al.  Multi-Iron Tungstodiarsenates. Synthesis, Characterization, and Electrocatalytic Studies of αββα-(FeIIIOH2)2FeIII2(As2W15O56)212- , 2003 .

[25]  M. T. Pope,et al.  Rationalization and improvement of the syntheses of two octadecatungstoarsenates: the novel α-K7[H4AsW18O62]·18H2O and the well known symmetrical α-K6[As2W18O62]·14H2O , 2003 .

[26]  R. Neumann,et al.  Activation of nitrous oxide and selective epoxidation of alkenes catalyzed by the manganese-substituted polyoxometalate, [Mn(III)2ZnW(Zn2W9O34)2]10-. , 2002, Journal of the American Chemical Society.

[27]  R. Thouvenot,et al.  Di- and Tricobalt Dawson Sandwich Complexes: Synthesis, Spectroscopic Characterization, and Electrochemical Behavior of Na18[(NaOH2)2Co2(P2W15O56)2] and Na17[(NaOH2)Co3(H2O)(P2W15O56)2] , 2002 .

[28]  Xuan Zhang,et al.  Reactions of trivacant Wells-Dawson heteropolytungstates. Ionic strength and Jahn-Teller effects on formation in multi-iron complexes. , 2002, Inorganic chemistry.

[29]  R. Thouvenot,et al.  Di‐ and Tetranuclear Dawson‐Derived Sandwich Complexes: Synthesis, Spectroscopic Characterization, and Electrochemical Behavior , 2002 .

[30]  C. Hill,et al.  Asymmetric Sandwich-Type Polyoxoanions. Synthesis, Characterization, and X-ray Crystal Structures of Diferric Complexes [TMIIFeIII2(P2W15O56)(P2TMII2W13O52)]16-, TM = Cu or Co , 2001 .

[31]  B. Keita,et al.  [H4AsW18O62]7-, a novel Dawson heteropolyanion and two of its sandwich-type derivatives [Zn4(H2O)2(H4AsW15O56)2]18-. [Cu4(H2O)2(H4AsW15O56)2]18-: cyclic voltammetry and electrocatalytic properties towards nitrite and nitrate , 2001 .

[32]  C. Hill,et al.  A Baker-Figgis isomer of conventional sandwich polyoxometalates. H2Na14[FeIII2(NaOH2)2(P2W15O56)2], a diiron catalyst for catalytic H2O2-based epoxidation. , 2001, Inorganic chemistry.

[33]  E. Wang,et al.  Crystal structure and replacement reaction of coordinated water molecules of the heteropoly compounds of sandwich-type tungstoarsenates. , 2000, Inorganic chemistry.

[34]  M. T. Pope,et al.  Heteropolymetalate Clusters of the Subvalent Main Group Elements BiIII and SbIII , 1999 .

[35]  R. Neumann Polyoxometalate Complexes in Organic Oxidation Chemistry , 1998 .

[36]  Ivan V. Kozhevnikov,et al.  Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. , 1998, Chemical reviews.

[37]  D. Katsoulis A Survey of Applications of Polyoxometalates. , 1998, Chemical reviews.

[38]  C. Hill,et al.  Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. , 1998, Chemical reviews.

[39]  Eugenio Coronado,et al.  Polyoxometalate-Based Molecular Materials. , 1998, Chemical reviews.

[40]  M. Misono,et al.  Catalytic Chemistry of Heteropoly Compounds , 1996 .

[41]  C. Hill,et al.  Homogeneous catalysis by transition metal oxygen anion clusters , 1995 .

[42]  J. J. Borrás-Almenar,et al.  Single-Crystal X-ray Structure and Magnetic Properties of the Polyoxotungstate Complexes Na16[M4(H2O)2(P2W15O56)2].cntdot.nH2O (M = MnII, n = 53; M = NiII, n = 52): An Antiferromagnetic MnII Tetramer and a Ferromagnetic NiII Tetramer , 1994 .

[43]  R. Finke,et al.  Structure of sodium bis(pentadecatungstodiphosphato)diaquatetrazincate hydrate (16∶1∶50) , 1994 .

[44]  R. Thouvenot,et al.  Hétéropolyanions de type Dawson. 2. Synthèses de polyoxotungstoarsénates lacunaires dérivant de l'octadécatungstodiarsénate. Étude structurale par RMN du tungstène-183 des octadéca(molybdotungstovanado)diarsénates apparentés , 1991 .

[45]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[46]  R. Finke,et al.  Single-crystal x-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H2O)2(PW9O34)2].cntdot.24H2O and Na14Cu[Cu4(H2O)2(P2W15O56)2].cntdot.53H2O , 1990 .

[47]  B. Keita,et al.  Surface modifications with heteropoly and isopoly oxometalates: Part I. Qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction , 1988 .

[48]  P. Domaille,et al.  Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional tungsten-183 NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = cobalt, copper, zinc) , 1987 .

[49]  W. G. Klemperer,et al.  Metal Oxide Chemistry in Solution: The Early Transition Metal Polyoxoanions , 1985, Science.

[50]  M. Droege,et al.  Trivacant heteropolytungstate derivatives. 2. Synthesis, characterization, and tungsten-183 NMR of P4W30M4(H2O)2O11216- (M = Co, Cu, Zn) , 1983 .

[51]  K. Kambe On the Paramagnetic Susceptibilities of Some Polynuclear Complex Salts , 1950 .

[52]  H. Wu CONTRIBUTION TO THE CHEMISTRY OF PHOSPHOMOLYBDIC ACIDS, PHOSPHOTUNGSTIC ACIDS, AND ALLIED SUBSTANCES , 1920 .

[53]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[54]  P. Mialane,et al.  Electrochemical generation of high-valent manganese catalysts in aqueous solutions from the sandwich-type polyoxoanion [(MnIII(H2O))3(SbW9O33)2]9− , 2007 .

[55]  B. Keita,et al.  Simple, high yield and reagent-saving synthesis of pure α-K6P2W18O62 · 14H2O , 2004 .

[56]  P. Kögerler,et al.  A variety of combinatorially linkable units as disposition:† from a giant icosahedral Keplerate to multi-functional metal–oxide based network structures , 1999 .

[57]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[58]  C. Tourné,et al.  Chiral polytungstometalates [WM3(H2O)2(XW9O34)2]12–(X = M = Zn or CoII) and their M-substituted derivatives. Syntheses, chemical, structural and spectroscopic study of some D,L sodium and potassium salts , 1991 .