Manganese(III)-containing Wells-Dawson sandwich-type polyoxometalates: comparison with their manganese(II) counterparts.
暂无分享,去创建一个
J. Marrot | A. Dolbecq | P. Berthet | A. Etcheberry | J. Vigneron | M. Lebrini | F. Sécheresse | I. Mbomekallé | J. Ntienoue | I. Mbomekalle
[1] Leroy Cronin,et al. Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.
[2] Yang-guang Li,et al. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties , 2010 .
[3] J. Marrot,et al. Rational Synthesis, Structure, Magnetism and Electrochemistry of Mixed Iron–Nickel‐Containing Wells–Dawson‐Fragment‐Based Sandwich‐Type Polyoxometalates , 2009 .
[4] M. Dressel,et al. Polyoxometalates: Fascinating structures, unique magnetic properties , 2009 .
[5] Tianbo Liu,et al. Synthesis of remarkably stabilized metal nanostructures using polyoxometalates , 2009 .
[6] P. Kögerler,et al. A polyoxometalate-based manganese carboxylate cluster. , 2008, Chemical communications.
[7] R. Finke,et al. The classic Wells-Dawson polyoxometalate, K6[alpha-P2W18O62].14H2O. Answering an 88 year-old question: what is its preferred, optimum synthesis? , 2008, Inorganic chemistry.
[8] L. Cronin,et al. Controlled assembly and solution observation of a 2.6 nm polyoxometalate 'super' tetrahedron cluster: [KFe12(OH)18(alpha-1,2,3-P2W15O56)4]29-. , 2007, Chemical communications.
[9] Xinlong Wang,et al. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster. , 2007, Inorganic chemistry.
[10] R. Thouvenot,et al. Electrochemical and electrocatalytical investigations on the trimanganese sandwich complex [NaMn3(H2O)2(P2W15O56)2]17− , 2007 .
[11] R. Thouvenot,et al. Mixed‐Metal Dawson Sandwich Complexes: Synthesis, Spectroscopic Characterization and Electrochemical Behaviour of Na16[MIICo3(H2O)2(P2W15O56)2] (M = Mn, Co, Ni, Zn and Cd) , 2007 .
[12] B. Keita,et al. Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements , 2007 .
[13] B. Krebs,et al. The First Structurally Characterized Mn(III) Substituted Sandwich-type Polyoxotungstates , 2006 .
[14] C. Hill,et al. Structural and Electrochemical Studies of Dicupric Wells–Dawson Sandwich-Type Complexes , 2006 .
[15] J. Marrot,et al. Structural and magnetic properties of Mn(III) and Cu(II) tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states. , 2006, Chemistry.
[16] L. Lezama,et al. Inorganic-metalorganic hybrids based on copper(II)-monosubstituted Keggin polyanions and dinuclear copper(II)-oxalate complexes. Synthesis, X-ray structural characterization, and magnetic properties. , 2005, Inorganic chemistry.
[17] F. Hussain,et al. Some indium(III)-substituted polyoxotungstates of the Keggin and Dawson types , 2005 .
[18] C. Hill,et al. Synthesis, structural characterization, and electrocatalytic studies of αββα-(ZnIIOH2)2(FeIII)2(X2W15O56)214– (X = P or As) , 2005 .
[19] C. Hill,et al. Polyoxometalate-supported Y- and YbIII-hydroxo/oxo clusters from carbonate-assisted hydrolysis. , 2005, Chemistry.
[20] C. Hill,et al. Electron Transfer Behavior of Multi-Iron Sandwich-Type Polyoxometalates and Electrocatalytic Reduction Reactions , 2004 .
[21] C. Hill,et al. Lacunary Wells−Dawson Sandwich Complexes − Synthesis, Characterization, and Stability Studies of Multi-Iron Species , 2003 .
[22] C. Hill,et al. Manganous heteropolytungstates. Synthesis and heteroatom effects in Wells–Dawson-derived sandwich complexes , 2003 .
[23] R. Contant,et al. THE HETEROPOLYOXOTUNGSTATES: RELATIONSHIPS BETWEEN ROUTES OF FORMATION AND STRUCTURES , 2003 .
[24] C. Hill,et al. Multi-Iron Tungstodiarsenates. Synthesis, Characterization, and Electrocatalytic Studies of αββα-(FeIIIOH2)2FeIII2(As2W15O56)212- , 2003 .
[25] M. T. Pope,et al. Rationalization and improvement of the syntheses of two octadecatungstoarsenates: the novel α-K7[H4AsW18O62]·18H2O and the well known symmetrical α-K6[As2W18O62]·14H2O , 2003 .
[26] R. Neumann,et al. Activation of nitrous oxide and selective epoxidation of alkenes catalyzed by the manganese-substituted polyoxometalate, [Mn(III)2ZnW(Zn2W9O34)2]10-. , 2002, Journal of the American Chemical Society.
[27] R. Thouvenot,et al. Di- and Tricobalt Dawson Sandwich Complexes: Synthesis, Spectroscopic Characterization, and Electrochemical Behavior of Na18[(NaOH2)2Co2(P2W15O56)2] and Na17[(NaOH2)Co3(H2O)(P2W15O56)2] , 2002 .
[28] Xuan Zhang,et al. Reactions of trivacant Wells-Dawson heteropolytungstates. Ionic strength and Jahn-Teller effects on formation in multi-iron complexes. , 2002, Inorganic chemistry.
[29] R. Thouvenot,et al. Di‐ and Tetranuclear Dawson‐Derived Sandwich Complexes: Synthesis, Spectroscopic Characterization, and Electrochemical Behavior , 2002 .
[30] C. Hill,et al. Asymmetric Sandwich-Type Polyoxoanions. Synthesis, Characterization, and X-ray Crystal Structures of Diferric Complexes [TMIIFeIII2(P2W15O56)(P2TMII2W13O52)]16-, TM = Cu or Co , 2001 .
[31] B. Keita,et al. [H4AsW18O62]7-, a novel Dawson heteropolyanion and two of its sandwich-type derivatives [Zn4(H2O)2(H4AsW15O56)2]18-. [Cu4(H2O)2(H4AsW15O56)2]18-: cyclic voltammetry and electrocatalytic properties towards nitrite and nitrate , 2001 .
[32] C. Hill,et al. A Baker-Figgis isomer of conventional sandwich polyoxometalates. H2Na14[FeIII2(NaOH2)2(P2W15O56)2], a diiron catalyst for catalytic H2O2-based epoxidation. , 2001, Inorganic chemistry.
[33] E. Wang,et al. Crystal structure and replacement reaction of coordinated water molecules of the heteropoly compounds of sandwich-type tungstoarsenates. , 2000, Inorganic chemistry.
[34] M. T. Pope,et al. Heteropolymetalate Clusters of the Subvalent Main Group Elements BiIII and SbIII , 1999 .
[35] R. Neumann. Polyoxometalate Complexes in Organic Oxidation Chemistry , 1998 .
[36] Ivan V. Kozhevnikov,et al. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. , 1998, Chemical reviews.
[37] D. Katsoulis. A Survey of Applications of Polyoxometalates. , 1998, Chemical reviews.
[38] C. Hill,et al. Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. , 1998, Chemical reviews.
[39] Eugenio Coronado,et al. Polyoxometalate-Based Molecular Materials. , 1998, Chemical reviews.
[40] M. Misono,et al. Catalytic Chemistry of Heteropoly Compounds , 1996 .
[41] C. Hill,et al. Homogeneous catalysis by transition metal oxygen anion clusters , 1995 .
[42] J. J. Borrás-Almenar,et al. Single-Crystal X-ray Structure and Magnetic Properties of the Polyoxotungstate Complexes Na16[M4(H2O)2(P2W15O56)2].cntdot.nH2O (M = MnII, n = 53; M = NiII, n = 52): An Antiferromagnetic MnII Tetramer and a Ferromagnetic NiII Tetramer , 1994 .
[43] R. Finke,et al. Structure of sodium bis(pentadecatungstodiphosphato)diaquatetrazincate hydrate (16∶1∶50) , 1994 .
[44] R. Thouvenot,et al. Hétéropolyanions de type Dawson. 2. Synthèses de polyoxotungstoarsénates lacunaires dérivant de l'octadécatungstodiarsénate. Étude structurale par RMN du tungstène-183 des octadéca(molybdotungstovanado)diarsénates apparentés , 1991 .
[45] Michael O'Keeffe,et al. Bond-valence parameters for solids , 1991 .
[46] R. Finke,et al. Single-crystal x-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H2O)2(PW9O34)2].cntdot.24H2O and Na14Cu[Cu4(H2O)2(P2W15O56)2].cntdot.53H2O , 1990 .
[47] B. Keita,et al. Surface modifications with heteropoly and isopoly oxometalates: Part I. Qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction , 1988 .
[48] P. Domaille,et al. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional tungsten-183 NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = cobalt, copper, zinc) , 1987 .
[49] W. G. Klemperer,et al. Metal Oxide Chemistry in Solution: The Early Transition Metal Polyoxoanions , 1985, Science.
[50] M. Droege,et al. Trivacant heteropolytungstate derivatives. 2. Synthesis, characterization, and tungsten-183 NMR of P4W30M4(H2O)2O11216- (M = Co, Cu, Zn) , 1983 .
[51] K. Kambe. On the Paramagnetic Susceptibilities of Some Polynuclear Complex Salts , 1950 .
[52] H. Wu. CONTRIBUTION TO THE CHEMISTRY OF PHOSPHOMOLYBDIC ACIDS, PHOSPHOTUNGSTIC ACIDS, AND ALLIED SUBSTANCES , 1920 .
[53] Leroy Cronin,et al. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.
[54] P. Mialane,et al. Electrochemical generation of high-valent manganese catalysts in aqueous solutions from the sandwich-type polyoxoanion [(MnIII(H2O))3(SbW9O33)2]9− , 2007 .
[55] B. Keita,et al. Simple, high yield and reagent-saving synthesis of pure α-K6P2W18O62 · 14H2O , 2004 .
[56] P. Kögerler,et al. A variety of combinatorially linkable units as disposition:† from a giant icosahedral Keplerate to multi-functional metal–oxide based network structures , 1999 .
[57] R. Blessing,et al. An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.
[58] C. Tourné,et al. Chiral polytungstometalates [WM3(H2O)2(XW9O34)2]12–(X = M = Zn or CoII) and their M-substituted derivatives. Syntheses, chemical, structural and spectroscopic study of some D,L sodium and potassium salts , 1991 .