Analysis of Heart Beat Dynamics through Singularity Spectrum
暂无分享,去创建一个
Harish Kumar | Oriol Pont | Michel Haïssaguerre | Hussein Yahia | Nicolas Derval | Mélèze Hocini | M. Hocini | M. Haïssaguerre | H. Yahia | Harish Kumar | N. Derval | O. Pont
[1] Richard G. Baraniuk,et al. Multiscale queuing analysis of long-range-dependent network traffic , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).
[2] H. Stanley,et al. Behavioral-independent features of complex heartbeat dynamics. , 2001, Physical review letters.
[3] Antonio Turiel,et al. Application of the microcanonical multifractal formalism to monofractal systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Stéphane Jaffard,et al. Multifractal formalism for functions part II: self-similar functions , 1997 .
[5] H. Stanley,et al. Magnitude and sign correlations in heartbeat fluctuations. , 2000, Physical review letters.
[6] Antonio Turiel,et al. Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .
[7] Luís A. Nunes Amaral,et al. From 1/f noise to multifractal cascades in heartbeat dynamics. , 2001, Chaos.
[8] Jeffrey M. Hausdorff,et al. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.
[9] H. Stanley,et al. Scale invariance in the nonstationarity of human heart rate. , 2000, Physical review letters.
[10] Stéphane Mallat,et al. Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.
[11] Antonio Turiel,et al. Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..
[12] Plamen Ch. Ivanov,et al. Long-Range Dependence in Heartbeat Dynamics , 2003 .
[13] Antonio Turiel,et al. On Optimal Wavelet Bases for the Realization of Microcanonical Cascade Processes , 2008, Int. J. Wavelets Multiresolution Inf. Process..
[14] S. Mallat. A wavelet tour of signal processing , 1998 .
[15] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[16] I. Simonsen,et al. Determination of the Hurst exponent by use of wavelet transforms , 1997, cond-mat/9707153.
[17] Stéphane Jaffard,et al. Multifractal formalism for functions part I: results valid for all functions , 1997 .
[18] Oriol Pont,et al. An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals , 2011, IWCIA.
[19] R. Klabunde. Cardiovascular Physiology Concepts , 2021 .
[20] Samuel Peter Kozaitis. Improved feature detection in ECG signals through denoising , 2008 .
[21] C L Jonesyxk. Wavelet packet computation of the Hurst exponent , 1996 .
[22] L. Amaral,et al. Multifractality in human heartbeat dynamics , 1998, Nature.
[23] S. Thurner,et al. Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology , 1997, adap-org/9711003.
[24] N. Parga,et al. Ju l 2 00 1 The multi-fractal structure of contrast changes in natural images : from sharp edges to textures , 2008 .