Nanotechnology and its applications in lignocellulosic composites, a mini review

Nanotechnology has applications across most economic sectors and allows the development of new enabling sci- ence. The ability to see materials down to nanoscale dimensions and to control how materials are constructed at the nanoscale is providing the opportunity to develop new materials and products in previously unimagined ways. This review covers the academic and industrial aspects of the preparation, characterization, material properties, crystalliza- tion behavior; melt rheology, and processing of polymer/cellulose or cellulose/cellulose nanocomposites. Cellulosic mate- rials have a great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. The fibrillation of pulp fiber to obtain nano-order- unit web-like network structure, called microfibrillated cellulose, is obtained through a mechanical treatment of pulp fibers, consisting of refining and high pressure homogenizing processes. Also, nano-whisker can be used as novel reinforcement in nanocomposites; it can be obtained by acid hydrolysis from various sources such as wood, tunicin, ramie, cotton, wheat straw, bacterial cellulose, and sugar beet. The properties of nanocomposite materials depend not only on the properties of their individual parents, but also on their morphology and interfacial characteristics. Compared with plant cellulose, bacte- rial cellulose has found many applications in the biomedical field as tissue engineering materials due to their good biocom- patibility, mechanical properties similar to those of hard and soft tissue and easy fabrication into a variety of shapes with adjustable interconnected porosity. One of the drawbacks of cellulose whiskers with polar surfaces is poor dispersibil- ity/compatibility with nonpolar solvents or resins. Thus, their incorporation as reinforcing materials for nanocomposites has so far been largely limited to aqueous or polar systems. To overcome this problem and broaden the type of possible poly- mer matrices, efforts of surface modification have been made. These attempts include surfactant coating or graft copoly- merization.

[1]  Ioannis S. Arvanitoyannis,et al.  Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2 , 1997 .

[2]  Biqiong Chen,et al.  Thermoplastic starch-clay nanocomposites and their characteristics , 2005 .

[3]  Hiroyuki Yano,et al.  The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites , 2004 .

[4]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[5]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[6]  Himanshu Jain,et al.  Solid Electrolytes: Advances in Science and Technology. , 2000 .

[7]  M. Motoki,et al.  Bacterial cellulose IV. Application to processed foods , 1993 .

[8]  Véronique Favier,et al.  Simulation and modeling of three-dimensional percolating structures: Case of a latex matrix reinforced by a network of cellulose fibers , 1997 .

[9]  A. Dufresne,et al.  Nanocomposite Polymer Electrolytes Based on Poly(oxyethylene) and Cellulose Nanocrystals , 2004 .

[10]  G. G. Leppard,et al.  The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus. , 1977, Canadian journal of microbiology.

[11]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials , 2003 .

[12]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[13]  Alain Dufresne,et al.  Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. , 2003, Biomacromolecules.

[14]  Darrell H. Reneker,et al.  DNA fibers by electrospinning , 1997 .

[15]  J. Sugiyama,et al.  Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction , 2000 .

[16]  N. Ogata,et al.  Structure and thermal/mechanical properties of poly (∈-caprolactone)-clay blend , 1997 .

[17]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[18]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[19]  M. Wada,et al.  Mechanical properties of Silk fibroin-microcrystalline cellulose composite films , 2002 .

[20]  J. BeMiller Carbohydrate chemistry for food scientists , 1997 .

[21]  Peter Lindner,et al.  Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization , 2002 .

[22]  Shigenori Kuga,et al.  Surface acylation of cellulose whiskers by drying aqueous emulsion. , 2006, Biomacromolecules.

[23]  A. Dufresne,et al.  Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. , 2003, Biomacromolecules.

[24]  Lina Zhang,et al.  Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films , 2004 .

[25]  A. Mayes,et al.  Free Energy Model for Layer-by-Layer Processing of Polyelectrolyte Multilayer Films , 2002 .

[26]  X. Sun,et al.  Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate , 2004 .

[27]  M. Rubner,et al.  Manipulating Nanoparticle Size within Polyelectrolyte Multilayers via Electroless Nickel Deposition , 2003 .

[28]  D. D. Eley Solid state electrochemistry , 1974, Nature.

[29]  A. Dufresne,et al.  Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers , 2004 .

[30]  A. Dufresne,et al.  Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell , 2005 .

[31]  Y. Huang,et al.  Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications , 2007 .

[32]  J. Lunt Large-scale production, properties and commercial applications of polylactic acid polymers , 1998 .

[33]  A. Dufresne,et al.  Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate) Nanocomposite Materials , 1999 .

[34]  Shulai Lu,et al.  Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization , 2006 .

[35]  T. Nishino,et al.  All-Cellulose Composite , 2004 .

[36]  Susan Selke,et al.  An overview of polylactides as packaging materials. , 2004, Macromolecular bioscience.

[37]  P. Halley,et al.  Preparation and characterisation of biodegradable starch-based nanocomposite materials , 2003 .

[38]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties , 1981 .

[39]  Paul Gatenholm,et al.  The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites , 2005 .

[40]  R. Dendievel,et al.  Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites , 2006 .

[41]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[42]  Kazunobu Yamada,et al.  Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material , 2002 .

[43]  X. Sun,et al.  Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends , 2001 .

[44]  J. L. Willett,et al.  Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil , 2003 .

[45]  D. Roylance INTRODUCTION TO COMPOSITE MATERIALS , 2000 .

[46]  M. Misra,et al.  Effect of Sequential Mixing and Compounding Conditions on Cellulose Acetate/Layered Silicate Nanocomposites , 2006 .

[47]  A. Dufresne,et al.  High performance nanocomposite polymer electrolytes , 2006 .

[48]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid , 1993 .

[49]  C. Nyström,et al.  Cellulose powder from Cladophora sp. algae , 1998, Journal of molecular recognition : JMR.

[50]  D. Page,et al.  Behaviour of Single Wood Fibres under Axial Tensile Strain , 1971, Nature.

[51]  A. Dufresne,et al.  Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. , 2002, Biomacromolecules.

[52]  Young Ha Kim,et al.  Biodegradable polymer blends of poly(L‐lactic acid) and gelatinized starch , 2000 .

[53]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[54]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior , 2001 .

[55]  S. Ray,et al.  New Polylactide/Layered Silicate Nanocomposites, 6 , 2003 .

[56]  Gero Decher,et al.  Multilayer Thin Films , 2002 .

[57]  T. Cosgrove,et al.  The configuration of adsorbed polymers at the solid–solution interface , 1981 .

[58]  X. Sun,et al.  Strengthening blends of Poly(lactic acid) and starch with methylenediphenyl diisocyanate , 2001 .

[59]  T. Wegner,et al.  Nanotechnology opportunities in residential and non-residential construction , 2005 .

[60]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[61]  James K. Hirvonen,et al.  Controlled deposition of electrospun poly(ethylene oxide) fibers , 2001 .

[62]  Gabriel A Silva,et al.  Introduction to nanotechnology and its applications to medicine. , 2004, Surgical neurology.

[63]  D. Stamatialis,et al.  Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films , 2004 .

[64]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .

[65]  S. Rizvi,et al.  Starch-based nanocomposites by reactive extrusion processing , 2004 .

[66]  R. Pecora,et al.  Translational and Rotational Dynamics of Rodlike Cellulose Whiskers , 2003 .

[67]  C. Graillat,et al.  New waterborne epoxy coatings based on cellulose nanofillers , 2001 .

[68]  X. Sun,et al.  Effects of Starch Moisture on Properties of Wheat Starch/Poly(Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate , 2002 .

[69]  Manjusri Misra,et al.  Injection molded "green" nanocomposite materials from renewable resources , 2004 .

[70]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[71]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet , 1981 .

[72]  G. Ingo,et al.  Synthesis, and structural and morphological characterization of iron oxide-ion-exchange resin and -cellulose nanocomposites , 2001 .

[73]  M. Rubner,et al.  Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers , 2002, Nature materials.

[74]  You-Lo Hsieh,et al.  Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate , 2002 .

[75]  Hsing-lin Wang,et al.  Polyelectrolyte Trilayer Combinations Using Spin-Assembly and Ionic Self-Assembly , 2003 .

[76]  C. Weder,et al.  Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers , 2004 .

[77]  P. Dubois,et al.  Controlled Ring-Opening Polymerization of ε-Caprolactone in the Presence of Layered Silicates and Formation of Nanocomposites , 2002 .

[78]  Chan-Young Park,et al.  Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids , 2002 .

[79]  P. Seib,et al.  Blending of poly(lactic acid) and starches containing varying amylose content , 2003 .

[80]  H. Fischer Polymer nanocomposites: from fundamental research to specific applications , 2003 .

[81]  Arno P. Schniewind,et al.  Concise encyclopedia of wood & wood-based materials , 1989 .

[82]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[83]  Alain Dufresne,et al.  Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites , 2000 .

[84]  Liang Hong,et al.  Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites , 2006 .

[85]  A. Dufresne Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. , 2006, Journal of nanoscience and nanotechnology.

[86]  T. Wegner,et al.  Advancing cellulose-based nanotechnology , 2006 .

[87]  Hari Singh Nalwa,et al.  Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites , 2003 .

[88]  Wadood Y. Hamad,et al.  Cellulosic Materials: Fibers, Networks and Composites , 2001 .

[89]  X. Sun,et al.  Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends , 2003 .

[90]  R. Schalek,et al.  Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties , 2006 .

[91]  H. Chanzy,et al.  Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents , 2002 .

[92]  N. A. Zakharov,et al.  Hydroxyapatite-Carboxymethyl Cellulose Nanocomposite Biomaterial , 2005 .

[93]  M. Gee,et al.  Polarized Infrared Attenuated Total Reflection for the in Situ Determination of the Orientation of Surfactant Adsorbed at the Solid/Solution Interface , 1998 .

[94]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt , 1981 .

[95]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[96]  J. Cavaillé,et al.  Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behavior analyzed through the quasi-point defect theory , 1999 .

[97]  M. Raghuraman,et al.  The microporosity of pulp : the precipitation of inorganic fillers within the micropores of the cell wall , 1992 .

[98]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[99]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[100]  Rémy Dendievel,et al.  Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions , 2007 .

[101]  J. Araki,et al.  Influence of surface charge on viscosity behavior of cellulose microcrystal suspension , 1999, Journal of Wood Science.

[102]  Emmanuel P. Giannelis,et al.  NEW ADVANCES IN POLYMER/LAYERED SILICATE NANOCOMPOSITES , 2002 .

[103]  José Augusto Marcondes Agnelli,et al.  A first insight on composites of thermoplastic starch and kaolin , 2001 .

[104]  F. Wypych,et al.  Starch films reinforced with mineral clay , 2003 .

[105]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[106]  S. Eichhorn,et al.  Review: Current international research into cellulosic fibres and composites , 2001 .

[107]  심철호 분쇄공정변수가 Microcrystalline cellulose의 비표면적에 미치는 영향 , 2006 .

[108]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[109]  G. Phillips,et al.  Microcrystalline cellulose: an overview. , 2000 .

[110]  M. El-Sakhawy,et al.  Nanocomposites from natural cellulose fibers incorporated with sucrose , 2006, Wood Science and Technology.

[111]  A. Dufresne,et al.  POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers , 2005 .

[112]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[113]  Won‐Ki Lee,et al.  Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites , 2003 .

[114]  T. Zimmermann,et al.  Mechanical and Morphological Properties of Cellulose Fibril Reinforced Nanocomposites , 2005 .

[115]  M. Misra,et al.  Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites , 2004 .

[116]  M. Márquez,et al.  Synthesis and self-assembly of nearly monodisperse nanoparticles of a naturally occurring polymer. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[117]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis , 2000 .

[118]  P. Ahlgren,et al.  Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material , 2005 .

[119]  J. Cavaillé,et al.  A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions , 1999 .

[120]  K. Edgar Cellulose Esters, Organic , 2004 .

[121]  S. Kuga,et al.  Bacterial cellulose membrane as separation medium , 1993 .

[122]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[123]  A. Dufresne,et al.  Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers , 2004 .

[124]  John Simonsen,et al.  Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. , 2006, Journal of nanoscience and nanotechnology.

[125]  H. Schmauder,et al.  Formation, derivatization and applications of bacterial cellulose. , 1994, International journal of biological macromolecules.

[126]  J. Nagy,et al.  Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition , 2005 .

[127]  T. Kurauchi,et al.  Synthesis and properties of polyimide–clay hybrid , 1993 .

[128]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[129]  G. Mittal,et al.  Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product , 2002 .

[130]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[131]  Y. Nishi,et al.  The structure and mechanical properties of sheets prepared from bacterial cellulose , 1990 .

[132]  Alain Dufresne,et al.  Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils , 1997 .

[133]  E. Cranston,et al.  Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. , 2006, Biomacromolecules.

[134]  J. Cavaillé,et al.  Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers , 2006 .

[135]  Kristiina Oksman,et al.  Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement , 2006 .

[136]  J. Sugiyama,et al.  Newly developed nanocomposites from cellulose acetate/layered silicate/poly(ε-caprolactone): Synthesis and morphological characterization , 2006, Journal of Wood Science.

[137]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .

[138]  Paula A. A. P. Marques,et al.  Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method , 2006 .

[139]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[140]  Charles R. Frihart,et al.  Nanotechnology applications in the forest products industry , 2006 .

[141]  Stephen J. Eichhorn,et al.  The Young's modulus of a microcrystalline cellulose , 2001 .

[142]  X. Sun,et al.  Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate , 2002 .

[143]  W. S. Williams,et al.  Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum , 1989, Applied and environmental microbiology.

[144]  R. Lazzaroni,et al.  Molecular Dynamics Study of ε-Caprolactone Intercalated in Wyoming Sodium Montmorillonite , 2003 .

[145]  M. El-Sakhawy,et al.  Physical and Mechanical Properties of Microcrystalline Cellulose Prepared from Local Agricultural Residues , 2003 .

[146]  T. King,et al.  Neutron scattering, nuclear magnetic resonance and photon correlation studies of polymers adsorbed at the solid-solution interface , 1981 .

[147]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[148]  Grecia R. Matos,et al.  Consumption of materials in the United States, 1900-1995 , 1998 .

[149]  Geoffrey Ingram Taylor,et al.  Electrically driven jets , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[150]  Alain Dufresne,et al.  Cellulose nanocrystals reinforced poly(oxyethylene) , 2004 .

[151]  A. N. Nakagaito,et al.  Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites , 2005 .

[152]  Jozef Keckes,et al.  All-cellulose nanocomposite , 2005 .

[153]  M. Strømme,et al.  What to do with all these algae , 2002 .

[154]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[155]  Akira Isogai,et al.  Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation , 1998 .

[156]  L. Berglund Cellulose-Based Nanocomposites , 2005 .

[157]  I. Arvanitoyannis,et al.  Preparation and study of novel biodegradable blends based on gelatinized starch and 1,4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications , 1997 .

[158]  W. Wan,et al.  The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[159]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[160]  A. Morin,et al.  Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone) , 2002 .

[161]  R. Rowell,et al.  Paper and Composites from Agro-Based Resources , 1996 .

[162]  Lei Zhai,et al.  Controlled drug release from porous polyelectrolyte multilayers. , 2006, Biomacromolecules.

[163]  M. El-Sakhawy,et al.  Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. , 2007 .

[164]  H. Fong,et al.  Electrospinning and the Formation of Nanofibers , 2001 .

[165]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .