A magnetorheological fluid embedded pneumatic vibration isolator allowing independently adjustable stiffness and damping

A magnetorheological (MR) fluid embedded pneumatic vibration isolator (MrEPI) with hybrid and compact connection of pneumatic spring and MR damping elements is proposed in this study. The proposed MrEPI system allows independent nonlinear stiffness and damping control with considerable maneuverable ranges. Meanwhile, it allows convenient switching between different passive and active vibration control modes, thus providing more flexibility and versatility in applications. To demonstrate the advantageous dynamic performance of the MrEPI, a nonlinear non-dimensional dynamic model is developed with full consideration of the nonlinear elements involved. A systematic analysis is therefore conducted which can clearly reveal the influence on system output performance caused by each physically important parameter and provide a useful insight into the analysis and design of nonlinear vibration isolators with pneumatic and MR elements.

[1]  Seung-Bok Choi,et al.  Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers , 2008 .

[2]  Norman M. Wereley,et al.  Self-Powered Magnetorheological Dampers , 2009 .

[3]  Simon C. Tung,et al.  Wear Testing of Seals in Magneto-Rheological Fluids© , 2004 .

[4]  Seung-Bok Choi,et al.  Non-dimensional analysis and design of a magnetorheological damper , 2005 .

[5]  M. Takasaki,et al.  An Active Micro Vibration Isolator with Zero-Power Controlled Magnetic Suspension Technology , 2006 .

[6]  Xuedong Chen,et al.  Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables , 2010 .

[7]  Farid Golnaraghi,et al.  Nonlinear analysis of switched semi-active controlled systems , 2011 .

[8]  Raouf A. Ibrahim,et al.  Recent advances in nonlinear passive vibration isolators , 2008 .

[9]  CheolHo Kim,et al.  An electro-magneto-pneumatic spring for vibration control in semiconductor manufacturing , 2009, 2009 IEEE International Conference on Mechatronics.

[10]  Wei-Hsin Liao,et al.  Harmonic analysis of a magnetorheological damper for vibration control , 2002 .

[11]  Li Cheng,et al.  A feasibility study of active vibration isolation using THUNDER actuators , 2002 .

[12]  Michael Goldfarb,et al.  Dynamic Constraint-Based Energy-Saving Control of Pneumatic Servo Systems , 2006 .

[13]  Aslam Muhammad,et al.  Review of magnetorheological (MR) fluids and its applications in vibration control , 2006 .

[14]  F Previdi,et al.  A novel control strategy for semi-active suspensions with variable damping and stiffness , 2010, Proceedings of the 2010 American Control Conference.

[15]  M. Nitta,et al.  Identification and control of precision XY stages with active vibration suppression system , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[16]  Babak Ebrahimi,et al.  Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems , 2009 .

[17]  Yi-Qing Ni,et al.  Cable Vibration Control using Magnetorheological Dampers , 2006 .

[18]  Juan R. Trapero,et al.  An adaptive pneumatic suspension based on the estimation of the excitation frequency , 2011 .

[19]  Giuseppe Quaglia,et al.  Air Suspension Dimensionless Analysis and Design Procedure , 2001 .

[20]  Y. Ribakov,et al.  Semi-active Pneumatic Devices for Control of MDOF Structures , 2009 .

[21]  Wei-Hsin Liao,et al.  Magnetorheological fluid dampers: a review of parametric modelling , 2011 .

[22]  Kwang-Joon Kim,et al.  Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations , 2007 .

[23]  J. Carlson,et al.  MR fluid, foam and elastomer devices , 2000 .

[24]  Neil D. Sims,et al.  Vibration isolation with smart fluid dampers: a benchmarking study , 2005 .

[25]  Billie F. Spencer,et al.  Large-scale MR fluid dampers: modeling and dynamic performance considerations , 2002 .

[26]  Hemanth Porumamilla Modeling, analysis and non-linear control of a novel pneumatic semi-active vibration isolator: a concept validation study , 2007 .

[27]  Qingjun Yang,et al.  Notice of RetractionNonlinearity analyses of pneumatic vibration isolation system with simple harmonic excitations , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[28]  Seung-Bok Choi,et al.  DESIGN AND TESTING OF A COMPACT MAGNETORHEOLOGICAL DAMPER FOR HIGH IMPULSIVE LOADS , 2005 .

[29]  W. I. Kordonski,et al.  Magnetorheological Fluid-Based Seal , 1996 .

[30]  A. L. Morales,et al.  An analytical model of pneumatic suspensions based on an experimental characterization , 2008 .

[31]  Michael J. Brennan,et al.  A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances , 2005 .

[32]  Alain Berry,et al.  Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs. , 2006, The Journal of the Acoustical Society of America.

[33]  Gangtie Zheng,et al.  An investigation into active vibration isolation based on predictive control. Part I: Energy source control , 2006 .

[34]  Mf Marcel Heertjes,et al.  Nonlinear Dynamics and Control of a Pneumatic Vibration Isolator , 2006 .

[35]  Juan Ramón Trapero Arenas,et al.  An adaptive pneumatic suspension based on the estimation of the excitation frequency , 2011 .

[36]  Takeshi Mizuno,et al.  Pneumatic Zero-Compliance Mechanism Using Negative Stiffness , 2005 .

[37]  Norman M. Wereley,et al.  Liquid Spring Shock Absorber with Controllable Magnetorheological Damping , 2006 .

[38]  Stephen P. Buchner,et al.  Self-contained active damping system for pneumatic isolation tables , 2000, Smart Structures.

[39]  Hrishikesh Deo,et al.  Axiomatic design of customizable automotive suspension systems , 2006 .

[40]  Norman M. Wereley,et al.  Characterization and Analysis of Magnetorheological Damper Behavior Under Sinusoidal Loading , 2001 .

[41]  Hiroshi Matsuhisa,et al.  Semi-active vibration isolation system with variable stiffness and damping control , 2008 .

[42]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1999 .

[43]  Norman M. Wereley,et al.  A Magnetorheological Damper with Bifold Valves for Shock and Vibration Mitigation , 2007 .

[44]  Edward Troy Tanner Combined Shock and Vibration Isolation Through the Self-Powered, Semi-Active Control of a Magnetorheological Damper in Parallel with an Air Spring , 2003 .

[45]  Xingjian Jing,et al.  Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities , 2008 .

[46]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1998, Smart Structures.

[47]  Jian Cao,et al.  Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles , 2008, Autom..

[48]  James R. Toscano,et al.  SEMI-ACTIVE VEHICLE CAB SUSPENSION USING MAGNETORHEOLOGICAL (MR) TECHNOLOGY , 2008 .

[49]  Cyril M. Harris,et al.  Shock and vibration handbook , 1976 .

[50]  Ming-Chang Shih,et al.  Active control of electro-rheological fluid embedded pneumatic vibration isolator , 2008, Integr. Comput. Aided Eng..

[51]  Yang Zhou,et al.  Development and analysis of a variable stiffness damper using an MR bladder , 2009 .

[52]  Myeong-Kwan Park,et al.  Performance Evaluation of Two Different Bypass-type MR Shock Dampers , 2007 .

[53]  Norman M. Wereley,et al.  Semi-Active Vibration Isolation Using Magnetorheological Isolators , 2005 .

[54]  Hiroshi Matsuhisa,et al.  Vibration Control by a Variable Damping and Stiffness System with Magnetorheological Dampers , 2006 .

[55]  I. Maciejewski Modelling and control of semi-active seat suspension with magneto-rheological damper , 2010 .