Convergence of a semi-Lagrangian scheme for the reduced Vlasov–Maxwell system for laser–plasma interaction

The subject matter of this paper concerns the numerical approximation of reduced Vlasov–Maxwell models by semi-Lagrangian schemes. Such reduced systems have been introduced recently in the literature for studying the laser–plasma interaction. We recall the main existence and uniqueness results on these topics, we present the semi-Lagrangian scheme and finally we establish the convergence of this scheme.

[1]  Olivier Coulaud,et al.  Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system , 2003 .

[2]  Eric Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations , 1998 .

[3]  Nicolas Besse Convergence of a Semi-Lagrangian Scheme for the One-Dimensional Vlasov-Poisson System , 2004, SIAM J. Numer. Anal..

[4]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[5]  Chi-Wang Shu,et al.  Analysis of the relativistic Vlasov-Maxwell model in an interval , 2005 .

[6]  N. Crouseilles,et al.  Vlasov laser-plasma interaction simulations in the relativistic regime with a moving grid , 2007 .

[7]  A. Klimas,et al.  A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .

[8]  Nicolas Besse,et al.  Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..

[9]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[10]  M. Shoucri,et al.  Numerical integration of the Vlasov equation , 1974 .

[11]  GLOBAL SOLUTIONS FOR THE ONE-DIMENSIONAL VLASOV¿MAXWELL SYSTEM FOR LASER-PLASMA INTERACTION , 2006, math/0609397.

[12]  Alain Ghizzo,et al.  A Vlasov code for the numerical simulation of stimulated Raman scattering , 1990 .

[13]  J. Boris,et al.  Solution of continuity equations by the method of flux-corrected transport , 1976 .

[14]  Martin Campos Pinto,et al.  Convergence of an Adaptive Scheme for the one dimensional Vlasov-Poisson system , 2005 .

[15]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[16]  M. Shoucri,et al.  Stimulated Raman scattering: Action evolution and particle trapping via Euler–Vlasov fluid simulation , 1992 .

[17]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[18]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[19]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[20]  Francis Filbet Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System , 2000 .

[21]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[22]  M. Bostan Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction , 2007 .

[23]  Francis Filbet,et al.  Convergence of a Finite Volume Scheme for the Vlasov-Poisson System , 2001, SIAM J. Numer. Anal..