Level-of-detail quad meshing

The most effective and popular tools for obtaining feature aligned quad meshes from triangular input meshes are based on cross field guided parametrization. These methods are incarnations of a conceptual three-step pipeline: (1) cross field computation, (2) field-guided surface parametrization, (3) quad mesh extraction. While in most meshing scenarios the user prescribes a desired target quad size or edge length, this information is typically taken into account from step 2 onwards only, but not in the cross field computation step. This turns into a problem in the presence of small scale geometric or topological features or noise in the input mesh: closely placed singularities are induced in the cross field, which are not properly reproducible by vertices in a quad mesh with the prescribed edge length, causing severe distortions or even failure of the meshing algorithm. We reformulate the construction of cross fields as well as field-guided parametrizations in a scale-aware manner which effectively suppresses densely spaced features and noise of geometric as well as topological kind. Dominant large-scale features are adequately preserved in the output by relying on the unaltered input mesh as the computational domain.

[1]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[2]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[3]  László Szirmay-Kalos,et al.  Hatching for Motion Picture Production , 2011, Comput. Graph. Forum.

[4]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[5]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[6]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[7]  Weiming Dong,et al.  Meshless quadrangulation by global parameterization , 2011, Comput. Graph..

[8]  David Bommes,et al.  QEx: robust quad mesh extraction , 2013, ACM Trans. Graph..

[9]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[10]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[11]  Daniele Panozzo,et al.  Fields on symmetric surfaces , 2012, ACM Trans. Graph..

[12]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[13]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[14]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[15]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[16]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[17]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[18]  Olga Sorkine-Hornung,et al.  Designing N‐PolyVector Fields with Complex Polynomials , 2014, Comput. Graph. Forum.

[19]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[20]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[21]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[22]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[23]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[24]  Jihad El-Sana,et al.  Controlled simplification of genus for polygonal models , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[25]  Marco Attene,et al.  Polygon mesh repairing: An application perspective , 2013, CSUR.

[26]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[28]  Shi-Min Hu,et al.  Metric-Driven RoSy Field Design and Remeshing , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[30]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[31]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[32]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[33]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[34]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[35]  Bruno Lévy,et al.  Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces , 2006, IEEE Transactions on Visualization and Computer Graphics.

[36]  Marcel Campen,et al.  Dual strip weaving , 2014, ACM Trans. Graph..

[37]  Leif Kobbelt,et al.  Automatic restoration of polygon models , 2005, TOGS.

[38]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[39]  Olga Sorkine-Hornung,et al.  Global parametrization of range image sets , 2011, SA '11.

[40]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[41]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[42]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..