Integrated Lab-on-a-Chip System in Life Sciences

Surface acoustic waves are employed to efficiently actuate and manipulate smallest amounts of fluids on a chip. The interaction between the surface wave and the fluid on a chip leads to acoutic streaming within the fluid, which can be used to pump and mix within a closed volume. At somewhat higher surface wave amplitude, small fluid volumes like droplets can be actuated as a whole. Our technique yields a very versatile approach toward a programmable fluidic microprocessor for which we give a few representative application examples, including a complete micro total analysis system with polymerase chain reaction on a chip.

[1]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[2]  Marion Kiechle,et al.  Highly comprehensive karyotype analysis by a combination of spectral karyotyping (SKY), microdissection, and reverse painting (SKY-MD) , 2004, Chromosome Research.

[3]  Andreas Houben,et al.  Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean , 1994, Molecular and General Genetics MGG.

[4]  R. G. Christensen,et al.  Fabrication of plastic microfluid channels by imprinting methods. , 1997, Analytical chemistry.

[5]  Q Chen,et al.  Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. , 1995, Genome.

[6]  C. Siegerist,et al.  Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic Force Microscope , 1992, Science.

[7]  J. Kutter,et al.  Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. , 2003, Lab on a chip.

[8]  Richard A. Flynn,et al.  VCSEL Arrays as Micromanipulators in Chip-Based Biosystems , 2003 .

[9]  Weber,et al.  Chromosome micro‐dissection and region‐specific libraries from pachytene chromosomes of maize (Zea mays L.) , 1998 .

[10]  P. Yager,et al.  Biotechnology at low Reynolds numbers. , 1996, Biophysical journal.

[11]  M. Gijs,et al.  Plastic micropump with ferrofluidic actuation , 2005, Journal of Microelectromechanical Systems.

[12]  Bernhard Horsthemke,et al.  Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification , 1989, Nature.

[13]  Kagan Kerman,et al.  Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. , 2005, Biosensors & bioelectronics.

[14]  G. Segal,et al.  Isolation and characterization of chromosome‐specific DNA sequences from a chromosome arm genomic library of common wheat , 1997 .

[15]  Tetsuo Ohashi,et al.  A simple device using magnetic transportation for droplet-based PCR , 2007, Biomedical microdevices.

[16]  Helene Andersson,et al.  Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. , 2004, Lab on a chip.

[17]  Yan Tie,et al.  Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing , 2002 .

[18]  Ali Khademhosseini,et al.  Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. , 2004, Lab on a chip.

[19]  E. Yeung,et al.  Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces. , 2001, Analytical chemistry.

[20]  Nam-Trung Nguyen,et al.  Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps , 2000 .

[21]  Bernhard Horsthemke,et al.  Microdissection of banded human chromosomes , 1990, Human Genetics.

[22]  C Cremer,et al.  Microdissection of human chromosomes by a laser microbeam. , 1986, Experimental cell research.

[23]  J. Yu,et al.  Chromosome microdissection and cloning in human genome and genetic disease analysis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Eric Henderson,et al.  Imaging and manipulating chromosomes with the atomic force microscope , 1995, Chromosome Research.

[25]  V. Pirrotta,et al.  Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes , 2004, Chromosoma.

[26]  Stefan Thalhammer,et al.  Single particle adsorbing transfer system , 2009, Biomedical microdevices.

[27]  D. Ledbetter,et al.  Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Z. Ruggeri,et al.  Von Willebrand factor, platelets and endothelial cell interactions , 2003, Journal of thrombosis and haemostasis : JTH.

[29]  Carl Eckart,et al.  Vortices and Streams Caused by Sound Waves , 1948 .

[30]  A Alexander-Katz,et al.  Shear-induced unfolding triggers adhesion of von Willebrand factor fibers , 2007, Proceedings of the National Academy of Sciences.

[31]  Michael W. Berns,et al.  Laser Microdissection for Generation of a Human Chromosome Region-specific Library , 1997, Microscopy and Microanalysis.

[32]  Achim Wixforth,et al.  Microfluidic mixing via acoustically driven chaotic advection. , 2008, Physical review letters.

[33]  Zheng Cui,et al.  Monolithically integrated PCR biochip for DNA amplification , 2003 .

[34]  Wigbert J. Siekhaus,et al.  Atomic force microscopy of mammalian sperm chromatin , 1993, Chromosoma.

[35]  S. Quake,et al.  An Integrated Microfabricated Cell Sorter , 2022 .

[36]  R. Hubert,et al.  Whole genome amplification from a single cell: implications for genetic analysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Wixforth,et al.  Planar chip device for PCR and hybridization with surface acoustic wave pump. , 2005, Lab on a chip.

[38]  R. Stark,et al.  GTG banding pattern on human metaphase chromosomes revealed by high resolution atomic‐force microscopy , 2001, Journal of microscopy.

[39]  Elinore M Mercer,et al.  Microfluidic sorting of mammalian cells by optical force switching , 2005, Nature Biotechnology.

[40]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[41]  P. Lichter,et al.  Painting of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes. , 1991, Cytogenetics and cell genetics.

[42]  Zanmin Hu,et al.  Microdissection and microcloning of rye (Secale cereale L.) chromosome 1R , 1999, Chromosoma.

[43]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[44]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[45]  K. O. Greulich,et al.  Telomeric sequences derived from laser-microdissected polytene chromosomes , 1989, Chromosoma.

[46]  E. Fisher,et al.  Microdissection and microcloning of the mouse X chromosome. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P S Meltzer,et al.  Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection. , 1994, Genomics.

[48]  I. Rodríguez,et al.  Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis , 2003, Electrophoresis.

[49]  L J Kricka,et al.  Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. , 1996, Nucleic acids research.

[50]  D Matson,et al.  A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. , 1998, Analytical chemistry.

[51]  Lord Rayleigh,et al.  XLII.On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem , 1905 .

[52]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[53]  Thomas Schnelle,et al.  Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids , 1994 .

[54]  A Ikai,et al.  Retrieval and amplification of single-copy genomic DNA from a nanometer region of chromosomes: a new and potential application of atomic force microscopy in genomic research. , 1998, Biochemical and biophysical research communications.

[55]  Hiroshi Goto,et al.  Ultrasonic micromixer for microfluidic systems , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[56]  M. Speicher,et al.  Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L J Kricka,et al.  PCR in a silicon microstructure. , 1994, Clinical chemistry.

[58]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[59]  A. Greenfield,et al.  Microdissection and microcloning from the proximal region of mouse chromosome 7: isolation of clones genetically linked to the pudgy locus. , 1987, Genomics.

[60]  A Alexander-Katz,et al.  Shear-flow-induced unfolding of polymeric globules. , 2006, Physical review letters.

[61]  G C Salzman,et al.  Automated single-cell manipulation and sorting by light trapping. , 1987, Applied optics.

[62]  R. Lal,et al.  Atomic force microscopy and dissection of gap junctions , 1991, Science.

[63]  H. Mao,et al.  Reusable platforms for high-throughput on-chip temperature gradient assays. , 2002, Analytical chemistry.

[64]  Achim Wixforth,et al.  Acoustically driven planar microfluidics , 2003 .

[65]  Dorian Liepmann,et al.  Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. , 2005, Lab on a chip.

[66]  Russell M. Taylor,et al.  Manipulation of individual viruses: friction and mechanical properties. , 1997, Biophysical journal.

[67]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[68]  Thomas Laurell,et al.  Improved chip design for integrated solid‐phase microextraction in on‐line proteomic sample preparation , 2002, Proteomics.

[69]  R. G. Herrmann,et al.  A DNA library from an individual Beta patellaris chromosome conferring nematode resistance obtained by microdissection of meiotic metaphase chromosomes , 1992, Plant Molecular Biology.

[70]  A. Manz,et al.  Design of an open-tubular column liquid chromatograph using silicon chip technology , 1990 .

[71]  A. Lee,et al.  An AC magnetohydrodynamic micropump , 2000 .

[72]  N. Hampp,et al.  Nanodissection and noncontact imaging of plasmid DNA with an atomic force microscope. , 2006, Scanning.

[73]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[74]  J P Landers,et al.  Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. , 1998, Analytical chemistry.

[75]  Masayoshi Esashi,et al.  Microflow devices and systems , 1994 .

[76]  Stefan Thalhammer,et al.  Atomic Force Microscopy as a Tool in Nanobiology Part I: Imaging and Manipulation in Cytogenetics. , 2004, Cancer genomics & proteomics.

[77]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[78]  P. Musilová,et al.  The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals , 2004, Chromosome Research.

[79]  James P Landers,et al.  On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation. , 2006, Lab on a chip.

[80]  Stephen F. Bart,et al.  Microfabricated electrohydrodynamic pumps , 1990 .

[81]  Naoki Harada,et al.  Chromosome-band-specific painting: chromosome in situ suppression hybridization using PCR products from a microdissected chromosome band as a probe pool , 1992, Human Genetics.

[82]  G. Fuhr,et al.  Three-dimensional electric field traps for manipulation of cells--calculation and experimental verification. , 1993, Biochimica et biophysica acta.

[83]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[84]  S G Shirley,et al.  Dielectrophoretic sorting of particles and cells in a microsystem. , 1998, Analytical chemistry.

[85]  C. Bustamante,et al.  Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. , 1992, Ultramicroscopy.

[86]  Almut Nebel,et al.  Complete and precise characterization of marker chromosomes by application of microdissection in prenatal diagnosis , 1995, Human Genetics.

[87]  L J Kricka,et al.  Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. , 1996, Nucleic acids research.

[88]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[89]  Masato Saito,et al.  Atomic force microscope-based dissection of human metaphase chromosomes and high resolutional imaging by carbon nanotube tip. , 2002, Archives of histology and cytology.

[90]  Stefan Thalhammer,et al.  The AFM as a tool for chromosomal dissection – the influence of physical parameters , 1998 .

[91]  Michael R. Speicher,et al.  Generation of Chromosome Painting Probes from Single Chromosomes by Laser Microdissection and Linker-Adaptor PCR , 2004, Chromosome Research.

[92]  Hans Lehrach,et al.  Molecular clones of the mouse t complex derived from microdissected metaphase chromosomes , 1984, Cell.

[93]  D H Johnson,et al.  Molecular cloning of DNA from specific chromosomal regions by microdissection and sequence-independent amplification of DNA. , 1990, Genomics.

[94]  J. Wienberg,et al.  The atomic force microscope as a new microdissecting tool for the generation of genetic probes. , 1997, Journal of structural biology.

[95]  Hideaki Matsuoka,et al.  High throughput easy microinjection with a single-cell manipulation supporting robot. , 2005, Journal of biotechnology.

[96]  S. Jacobson,et al.  Multiple sample PCR amplification and electrophoretic analysis on a microchip. , 1998, Analytical chemistry.

[97]  Hye Jung Cho,et al.  Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip , 2002 .

[98]  Christopher R. Lowe,et al.  Silicon microchambers for DNA amplification , 1998 .

[99]  Alan Tunnacliffe,et al.  Cytogenetic analysis by chromosome painting using dop‐pcr amplified flow‐sorted chromosomes , 1992, Genes, chromosomes & cancer.

[100]  Youn Tae Kim,et al.  Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. , 2004, Lab on a chip.

[101]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[102]  Chang-JinCJ Kim,et al.  Valveless pumping using traversing vapor bubbles in microchannels , 1998 .