Krylov Subspace Methods for Topology Optimization on Adaptive Meshes

Topology optimization is a powerful tool for global and multiscale design of structures, microstructures, and materials. The computational bottleneck of topology optimization is the solution of a large number of extremely ill-conditioned linear systems arising in the finite element analysis. Adaptive mesh refinement (AMR) is one efficient way to reduce the computational cost. We propose a new AMR scheme for topology optimization that results in more robust and efficient solutions. For large sparse symmetric linear systems arising in topology optimization, Krylov subspace methods are required. The convergence rate of a Krylov subspace method for a symmetric linear system depends on the spectrum of the system matrix. We address the ill-conditioning in the linear systems in three ways, namely rescaling, recycling, and preconditioning. First, we show that a proper rescaling of the linear systems reduces the huge condition numbers that typically occur in topology optimization to roughly those arising for a problem with homogeneous density. Second, the changes in the linear system from one optimization step to the next are relatively small. Therefore, recycling a subspace of the Krylov subspace and using it to solve the next system can improve the convergence rate significantly. We propose a minimum residual method with recycling (RMINRES) that preserves the short-term recurrence and reduces the cost of recycle space selection by exploiting the symmetry. Numerical results show that this method significantly reduces the total number of iterations over all linear systems and the overall computational cost (compared with the MINRES method which

[1]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[4]  Scott R. Kohn,et al.  Managing complex data and geometry in parallel structured AMR applications , 2006, Engineering with Computers.

[5]  Marcelo Krajnc Alves,et al.  Layout optimization with h‐adaptivity of structures , 2003 .

[6]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[8]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[9]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[10]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[11]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[12]  Glaucio H. Paulino,et al.  Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution , 2008 .

[13]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[14]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[15]  R. Stainko An adaptive multilevel approach to the minimal compliance problem in topology optimization , 2005 .

[16]  Glaucio H. Paulino Guest Editorial: Modeling of Functionally Graded Materials , 2004, Int. J. Comput. Eng. Sci..

[17]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[18]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[21]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[22]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[23]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[24]  T. Chan,et al.  Wavelet sparse approximate inverse preconditioners , 1997 .

[25]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[26]  Wei-Pai Tang,et al.  Sparse Approximate Inverse Smoother for Multigrid , 2000, SIAM J. Matrix Anal. Appl..

[27]  Y. Kim,et al.  Parallelized structural topology optimization for eigenvalue problems , 2004 .

[28]  Glaucio H. Paulino,et al.  Design of Functionally Graded Structures Using Topology Optimization , 2005 .

[29]  G. H. Paulino,et al.  A methodology for adaptive finite element analysis: Towards an integrated computational environment , 1999 .

[30]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[31]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[32]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[33]  Ole Sigmund,et al.  Topology optimization: a tool for the tailoring of structures and materials , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Chau H. Le,et al.  A modified Q4/Q4 element for topology optimization , 2009 .

[35]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[36]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[37]  Robert Bridson,et al.  Multiresolution Approximate Inverse Preconditioners , 2001, SIAM J. Sci. Comput..

[38]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[39]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[40]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[41]  Kumar Vemaganti,et al.  Parallel methods for optimality criteria-based topology optimization , 2005 .

[42]  Kai Wang,et al.  Parallel Multilevel Sparse Approximate Inverse Preconditioners in Large Sparse Matrix Computations , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[43]  O. Sigmund,et al.  Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[44]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[45]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[46]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[47]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[48]  Cornelis Vuik,et al.  Coarse grid acceleration of a parallel block preconditioner , 2001, Future Gener. Comput. Syst..

[49]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[50]  J. Petersson,et al.  Large-scale topology optimization in 3D using parallel computing , 2001 .

[51]  Edmond Chow,et al.  Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..

[52]  K. Matsui,et al.  Continuous approximation of material distribution for topology optimization , 2004 .

[53]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[54]  Ole Sigmund,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.

[55]  Volker Mehrmann,et al.  Algebraic Multilevel Methods and Sparse Approximate Inverses , 2002, SIAM J. Matrix Anal. Appl..

[56]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[57]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[58]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[59]  E. de Sturler,et al.  Incomplete block LU preconditioners on slightly overlapping subdomains for a massively parallel computer , 1995 .

[60]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[61]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[62]  A. Tucker,et al.  Topology Optimisation of Aircraft Wing Box Ribs , 2004 .

[63]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .