Krylov Subspace Methods for Topology Optimization on Adaptive Meshes
暂无分享,去创建一个
[1] Michele Benzi,et al. Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..
[2] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[3] A. A. Nikishin,et al. Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .
[4] Scott R. Kohn,et al. Managing complex data and geometry in parallel structured AMR applications , 2006, Engineering with Computers.
[5] Marcelo Krajnc Alves,et al. Layout optimization with h‐adaptivity of structures , 2003 .
[6] Ole Sigmund,et al. Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] M. Bendsøe,et al. Material interpolation schemes in topology optimization , 1999 .
[8] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[9] YereminA. Yu.,et al. Factorized sparse approximate inverse preconditionings I , 1993 .
[10] Edmond Chow,et al. Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..
[11] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[12] Glaucio H. Paulino,et al. Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution , 2008 .
[13] James K. Guest,et al. Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .
[14] E. Sturler,et al. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .
[15] R. Stainko. An adaptive multilevel approach to the minimal compliance problem in topology optimization , 2005 .
[16] Glaucio H. Paulino. Guest Editorial: Modeling of Functionally Graded Materials , 2004, Int. J. Comput. Eng. Sci..
[17] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[18] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[19] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[20] O. Axelsson,et al. Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.
[21] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[22] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[23] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[24] T. Chan,et al. Wavelet sparse approximate inverse preconditioners , 1997 .
[25] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[26] Wei-Pai Tang,et al. Sparse Approximate Inverse Smoother for Multigrid , 2000, SIAM J. Matrix Anal. Appl..
[27] Y. Kim,et al. Parallelized structural topology optimization for eigenvalue problems , 2004 .
[28] Glaucio H. Paulino,et al. Design of Functionally Graded Structures Using Topology Optimization , 2005 .
[29] G. H. Paulino,et al. A methodology for adaptive finite element analysis: Towards an integrated computational environment , 1999 .
[30] M. Bendsøe,et al. Generating optimal topologies in structural design using a homogenization method , 1988 .
[31] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[32] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[33] Ole Sigmund,et al. Topology optimization: a tool for the tailoring of structures and materials , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[34] Chau H. Le,et al. A modified Q4/Q4 element for topology optimization , 2009 .
[35] Benjamin S. Kirk,et al. Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .
[36] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[37] Robert Bridson,et al. Multiresolution Approximate Inverse Preconditioners , 2001, SIAM J. Sci. Comput..
[38] Edmond Chow,et al. A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[39] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[40] O. Sigmund,et al. Topology optimization of channel flow problems , 2005 .
[41] Kumar Vemaganti,et al. Parallel methods for optimality criteria-based topology optimization , 2005 .
[42] Kai Wang,et al. Parallel Multilevel Sparse Approximate Inverse Preconditioners in Large Sparse Matrix Computations , 2003, ACM/IEEE SC 2003 Conference (SC'03).
[43] O. Sigmund,et al. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.
[44] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[45] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[46] Ole Sigmund,et al. On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .
[47] J. Petersson,et al. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .
[48] Cornelis Vuik,et al. Coarse grid acceleration of a parallel block preconditioner , 2001, Future Gener. Comput. Syst..
[49] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[50] J. Petersson,et al. Large-scale topology optimization in 3D using parallel computing , 2001 .
[51] Edmond Chow,et al. Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..
[52] K. Matsui,et al. Continuous approximation of material distribution for topology optimization , 2004 .
[53] Ronald N. Bracewell,et al. The Fourier Transform and Its Applications , 1966 .
[54] Ole Sigmund,et al. Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.
[55] Volker Mehrmann,et al. Algebraic Multilevel Methods and Sparse Approximate Inverses , 2002, SIAM J. Matrix Anal. Appl..
[56] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..
[57] K.E. Petersen,et al. Silicon as a mechanical material , 1982, Proceedings of the IEEE.
[58] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[59] E. de Sturler,et al. Incomplete block LU preconditioners on slightly overlapping subdomains for a massively parallel computer , 1995 .
[60] M. Bendsøe. Optimal shape design as a material distribution problem , 1989 .
[61] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[62] A. Tucker,et al. Topology Optimisation of Aircraft Wing Box Ribs , 2004 .
[63] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .