Variational Modeling of Slip: From Crystal Plasticity to Geological Strata

Slip processes are soft modes of deformation, characteristic of a variety of layered materials. The layers can be at the atomic scale, as in the plastic deformation of crystalline lattices, or on a macroscopic scale, as in stacks of cards or sheets of paper and geological strata. The characteristic deformation processes involve sliding of the layers over one another, leading to a shear deformation with a specific orientation. If the forcing is not parallel to the layers, complex microstructures may form, which have a remarkable similarity over different systems and often consist of alternating shears of different sign. We review here recent results on the detailed analysis of slip processes in crystal plasticity based on the theory of relaxation, discuss the general variational framework for these microstructures, and compare with available experimental results in different systems. We then address the situation in which slip in several different directions may coexist in the same system, as frequently observed in plastically deformed crystals.

[1]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[2]  L. Scardia,et al.  Geometric rigidity for incompatible fields, and an application to strain-gradient plasticity , 2014 .

[3]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[4]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[5]  Florian Theil,et al.  Single-Slip Elastoplastic Microstructures , 2005 .

[6]  R. Kohn,et al.  Branching of twins near an austenite—twinned-martensite interface , 1992 .

[7]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[8]  Alexander Mielke,et al.  Energetic formulation of multiplicative elasto-plasticity using dissipation distances , 2003 .

[9]  Alexander Mielke,et al.  Variational Approaches and Methods for Dissipative Material Models with Multiple Scales , 2015 .

[10]  S. Conti,et al.  Relaxation and microstructurein a model for finite crystal plasticity with one slip system in three dimensions , 2012 .

[11]  Alison Ord,et al.  The thermodynamics of deformed metamorphic rocks: A review , 2011 .

[12]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[13]  N. Fleck,et al.  On kink-band propagation in fiber composites , 1998 .

[14]  P. P. Castañeda,et al.  Fiber-constrained, dielectric-elastomer composites: Finite-strain response and stability analysis , 2014 .

[15]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[16]  Stefan Müller,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Lower Semi-continuity and Existence of Minimizers in Incremental Finite-strain Elastoplasticity , 2022 .

[17]  Sergio Conti,et al.  Asymptotic Behavior of Crystal Plasticity with One Slip System in the Limit of Rigid Elasticity , 2011, SIAM J. Math. Anal..

[18]  Norman A. Fleck,et al.  Compressive Failure of Fiber Composites , 1997 .

[19]  S. Conti,et al.  The div-curl lemma for sequences whose divergence and curl are compact in W^{-1,1} , 2009, 0907.0397.

[20]  D. Raabe,et al.  Lamination microstructure in shear deformed copper single crystals , 2009 .

[21]  Carsten Carstensen,et al.  Effective relaxation for microstructure simulations: algorithms and applications , 2004 .

[22]  S. Conti,et al.  Relaxation in crystal plasticity with three active slip systems , 2016 .

[23]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[24]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[25]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[26]  Antonio DeSimone,et al.  Macroscopic Response of¶Nematic Elastomers via Relaxation of¶a Class of SO(3)-Invariant Energies , 2002 .

[27]  Caterina Ida Zeppieri,et al.  Line-Tension Model for Plasticity as the Gamma-Limit of a Nonlinear Dislocation Energy , 2012, SIAM J. Math. Anal..

[28]  Klaus Hackl,et al.  Analysis and Computation of Microstructure in Finite Plasticity , 2015 .

[29]  Carsten Carstensen,et al.  Numerical Analysis of microstructure , 2001 .

[30]  M. Gurtin,et al.  On the characterization of geometrically necessary dislocations in finite plasticity , 2001 .

[31]  A. DeSimone,et al.  Soft elastic response of stretched sheets of nematic elastomers: a numerical study , 2002 .

[32]  Michael Ortiz,et al.  Nonconvex energy minimization and dislocation structures in ductile single crystals , 1999 .

[33]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[34]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[35]  Andrea Braides Γ-convergence for beginners , 2002 .

[36]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[37]  M. Ortiz,et al.  Dislocation Microstructures and the Effective Behavior of Single Crystals , 2005 .

[38]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[39]  L. Scardia,et al.  Gradient Theory for Geometrically Nonlinear Plasticity via the Homogenization of Dislocations , 2015 .

[40]  M. Lambrecht,et al.  Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals , 2002 .

[41]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[42]  P. Dondl,et al.  Relaxation of the single-slip condition in strain-gradient plasticity , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Klaus Hackl,et al.  The evolution of laminates in finite crystal plasticity: a variational approach , 2011 .

[44]  C. Reina,et al.  Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=FeFp , 2013, 1312.2904.

[45]  Klaus Hackl,et al.  Rate-Independent versus Viscous Evolution of Laminate Microstructures in Finite Crystal Plasticity , 2015 .

[46]  Renaud Gutkin,et al.  A micromechanical model for kink-band formation: Part I — experimental study and numerical modelling , 2009 .

[47]  C. Carstensen,et al.  Mixed analytical–numerical relaxation in finite single-slip crystal plasticity , 2008 .

[48]  C. Völlmecke,et al.  Geometric modelling of kink banding in laminated structures , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Carsten Carstensen,et al.  Numerical Algorithms for the Simulation of Finite Plasticity with Microstructures , 2015 .

[50]  Georg Dolzmann,et al.  RELAXATION OF A MODEL IN FINITE PLASTICITY WITH TWO SLIP SYSTEMS , 2013 .

[51]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[52]  Nathan Albin,et al.  Infinite-order laminates in a model in crystal plasticity , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[53]  Sergio Conti,et al.  Quasiconvex functions incorporating volumetric constraints are rank-one convex , 2008 .

[54]  Giles W Hunt,et al.  A nonlinear model for parallel folding with friction , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[55]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[56]  P. Dondl,et al.  Energy Estimates, Relaxation, and Existence for Strain-Gradient Plasticity with Cross-Hardening , 2015 .

[57]  Konstantinos Koumatos,et al.  Orientation-preserving Young measures , 2013, 1307.1007.

[58]  Mark A. Peletier,et al.  Self-Similar Voiding Solutions of a Single Layered Model of Folding Rocks , 2012, SIAM J. Appl. Math..

[59]  S. Conti,et al.  Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models , 2010, 1003.1917.

[60]  Carsten Carstensen,et al.  Non–convex potentials and microstructures in finite–strain plasticity , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  Norman A. Fleck,et al.  Compressive Kinking of Fiber Composites: A Topical Review , 1994 .

[62]  T. Schubert Scaling relation for low energy states in a single‐slip model in finite crystal plasticity , 2015 .

[63]  M. Ahmer Wadee,et al.  The Maxwell stability criterion in pseudo-energy models of kink banding , 2000 .

[64]  D. Raabe,et al.  Microstructure in Plasticity, a Comparison between Theory and Experiment , 2015 .

[65]  Robert V. Kohn,et al.  Surface energy and microstructure in coherent phase transitions , 1994 .

[66]  Georg Dolzmann,et al.  On the Theory of Relaxation in Nonlinear Elasticity with Constraints on the Determinant , 2014, 1403.5779.

[67]  Stefan Müller,et al.  Calculus of Variations and Geometric Evolution Problems , 1999 .

[68]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[69]  Wolfgang Desch,et al.  Progress in nonlinear differential equations and their applications, Vol. 80 , 2011 .

[70]  S. Conti,et al.  Relaxation of a class of variational models in crystal plasticity , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  J. Cosgrove,et al.  Analysis of geological structures , 1989 .

[72]  Giovanni Leoni,et al.  Gradient theory for plasticity via homogenization of discrete dislocations , 2008, 0808.2361.

[73]  M. Ahmer Wadee,et al.  Kink Band Instability in Layered Structures , 2004 .

[74]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[75]  Klaus Hackl,et al.  A model for the evolution of laminates in finite‐strain elastoplasticity , 2012 .

[76]  Vladimir Sverak,et al.  Convex integration with constraints and applications to phase transitions and partial differential equations , 1999 .

[77]  S. Conti,et al.  Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions , 2014, 1403.4877.