Mineral-catalysed formation of marine NO and N2O on the anoxic early Earth

[1]  Analissa F. Sarno,et al.  Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin , 2021, Frontiers in Microbiology.

[2]  K. Takai,et al.  Stable Abiotic Production of Ammonia from Nitrate in Komatiite-Hosted Hydrothermal Systems in the Hadean and Archean Oceans , 2021, Minerals.

[3]  P. Sánchez‐Baracaldo,et al.  Inhibition of photoferrotrophy by nitric oxide in ferruginous environments , 2021 .

[4]  Mak A. Saito,et al.  Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean , 2020, Nature Geoscience.

[5]  S. Seager,et al.  Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H2O Cross Sections , 2020, The Astrophysical Journal.

[6]  K. Zahnle,et al.  The Archean atmosphere , 2020, Science Advances.

[7]  R. Hu,et al.  Stability of Nitrogen in Planetary Atmospheres in Contact with Liquid Water , 2019, The Astrophysical Journal.

[8]  Zoe R. Todd,et al.  Nitrogen Oxide Concentrations in Natural Waters on Early Earth , 2019, Geochemistry, Geophysics, Geosystems.

[9]  J. Kasting,et al.  Abiotic O2 Levels on Planets around F, G, K, and M Stars: Effects of Lightning-produced Catalysts in Eliminating Oxygen False Positives , 2018, The Astrophysical Journal.

[10]  J. Kasting,et al.  Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration , 2018, Geobiology.

[11]  David C. Catling,et al.  Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life , 2018, Science Advances.

[12]  Matthieu Laneuville,et al.  Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle , 2017, Astrobiology.

[13]  F. Joos,et al.  Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations , 2017 .

[14]  J. Gonzalez,et al.  Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis , 2017, Front. Microbiol..

[15]  Y. Yung,et al.  Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence. , 2017, Astrobiology.

[16]  Gui‐Peng Yang,et al.  Determination of dissolved nitric oxide in coastal waters of the Yellow Sea off Qingdao , 2017 .

[17]  K. Konhauser,et al.  The formation of magnetite in the early Archean oceans , 2017 .

[18]  M. Altabet,et al.  N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system , 2017 .

[19]  I. Halevy,et al.  The geologic history of seawater pH , 2017, Science.

[20]  A. Yamaguchi,et al.  Molybdenum Sulfide: A Bioinspired Electrocatalyst for Dissimilatory Ammonia Synthesis with Geoelectrical Current , 2017 .

[21]  R. Popovitz‐Biro,et al.  A key role for green rust in the Precambrian oceans and the genesis of iron formations , 2017 .

[22]  S. Wankel,et al.  A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide , 2017 .

[23]  William C. Danchi,et al.  Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun , 2016 .

[24]  R. Sanford,et al.  Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ , 2016, Applied and Environmental Microbiology.

[25]  B. Ward,et al.  Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone , 2015 .

[26]  D. Canfield,et al.  Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin , 2015, Scientific Reports.

[27]  D. Stahl,et al.  The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. , 2015, Environmental microbiology.

[28]  D. Bianchi,et al.  Rapid nitrous oxide cycling in the suboxic ocean , 2015, Science.

[29]  K. Rosso,et al.  Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria , 2015, Science.

[30]  K. Casciotti,et al.  Stable isotopes and iron oxide mineral products as markers of chemodenitrification. , 2015, Environmental science & technology.

[31]  E. Swanner,et al.  Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity , 2015 .

[32]  G. H. Shaw Earth's Early Atmosphere and Surface Environment , 2014 .

[33]  Alexander D. Gordon,et al.  Reduction of Nitrite and Nitrate on Nano-dimensioned FeS , 2013, Origins of Life and Evolution of Biospheres.

[34]  D. Wink,et al.  Biological nitric oxide signalling: chemistry and terminology , 2013, British journal of pharmacology.

[35]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H2S AND SO2 PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES , 2013, 1302.6603.

[36]  M. Strous,et al.  Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. , 2013, Biochimica et biophysica acta.

[37]  R. Hu Atmospheric Photochemistry, Surface Features, and Potential Biosignature Gases of Terrestrial Exoplanets , 2013 .

[38]  K. Rosso,et al.  Synthesis and properties of titanomagnetite (Fe(3-x)Ti(x)O4) nanoparticles: a tunable solid-state Fe(II/III) redox system. , 2012, Journal of colloid and interface science.

[39]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[40]  I. Ribas,et al.  THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES , 2012 .

[41]  N. Revsbech,et al.  Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific , 2012 .

[42]  M. Könneke,et al.  Production of oceanic nitrous oxide by ammonia-oxidizing archaea , 2012 .

[43]  D. Canfield,et al.  Green rust formation controls nutrient availability in a ferruginous water column , 2012 .

[44]  Renato J. Alves,et al.  The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. , 2012, Biochimica et biophysica acta.

[45]  M. V. van Loosdrecht,et al.  Reduced iron induced nitric oxide and nitrous oxide emission. , 2011, Water research.

[46]  J. Kasting,et al.  Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon , 2011, Geobiology.

[47]  K. Buesseler,et al.  Variability in the average sinking velocity of marine particles , 2010 .

[48]  K. Casciotti,et al.  Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium , 2010 .

[49]  O. Toon,et al.  Fractal Organic Hazes Provided an Ultraviolet Shield for Early Earth , 2010, Science.

[50]  P. Falkowski,et al.  The cycling and redox state of nitrogen in the Archaean ocean , 2009 .

[51]  A. Ducluzeau,et al.  Was nitric oxide the first deep electron sink? , 2009, Trends in biochemical sciences.

[52]  Roger Buick,et al.  Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? , 2007 .

[53]  B. Khare,et al.  Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate. , 2007, Astrobiology.

[54]  M. Trimmer,et al.  High‐resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea , 2007 .

[55]  Suharti,et al.  Membrane-bound denitrification in the Gram-positive bacterium Bacillus azotoformans. , 2005, Biochemical Society transactions.

[56]  James F. Kasting,et al.  Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere , 2005, Origins of life and evolution of the biosphere.

[57]  C. McKay,et al.  The evolution of nitrogen cycling , 2005, Origins of life and evolution of the biosphere.

[58]  A. G. Allen,et al.  Volcanic source for fixed nitrogen in the early Earth's atmosphere , 2004 .

[59]  E. Kandeler,et al.  Short-term assay of soil urease activity using colorimetric determination of ammonium , 1988, Biology and Fertility of Soils.

[60]  P. Crutzen,et al.  Wavelength dependence of isotope fractionation in N 2 O photolysis , 2002 .

[61]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[62]  M. Scherer,et al.  Kinetics of Cr(VI) reduction by carbonate green rust. , 2001, Environmental science & technology.

[63]  R. Matthews,et al.  Cobalamin-dependent methyltransferases. , 2001, Accounts of chemical research.

[64]  D. Wink,et al.  A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. , 2001, Nitric oxide : biology and chemistry.

[65]  G. Cody,et al.  Abiotic nitrogen reduction on the early Earth , 1998, Nature.

[66]  Sun,et al.  Surface Characteristics of Magnetite in Aqueous Suspension , 1998, Journal of colloid and interface science.

[67]  D. Sumner Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa , 1997 .

[68]  W. Davison,et al.  Chemical catalysis of nitrate reduction by iron (II) , 1997 .

[69]  J. Grotzinger,et al.  Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? , 1996, Geology.

[70]  O. Borggaard,et al.  Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite , 1994 .

[71]  R. Matthews,et al.  Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group. , 1994, Biochemistry.

[72]  R. Matthews,et al.  Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction. , 1994, Biochemistry.

[73]  M. Saraste,et al.  Cytochrome oxidase evolved by tinkering with denitrification enzymes , 1994, FEBS letters.

[74]  Sherwood Chang,et al.  Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth , 1993, Nature.

[75]  A. Anbar,et al.  The photochemistry of manganese and the origin of Banded Iron Formations. , 1992, Geochimica et cosmochimica acta.

[76]  J. Sørensen,et al.  Stimulation by lepidocrocite (7-FeOOH) of Fe(II)-dependent nitrite reduction , 1991 .

[77]  W. Zumft,et al.  Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri , 1988, Journal of bacteriology.

[78]  D. Hunten,et al.  Stratospheric eddy diffusion coefficients from tracer data , 1981 .

[79]  O. Zafiriou,et al.  Nitric oxide from nitrite photolysis in the central equatorial Pacific , 1981 .

[80]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .