Smolyak cubature of given polynomial degree with few nodes for increasing dimension
暂无分享,去创建一个
[1] Shu Tezuka,et al. Financial Applications of Monte Carlo and Quasi-Monte Carlo Methods , 1998 .
[2] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[3] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[6] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[7] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[8] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[9] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[10] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[11] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[12] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[13] Giovanni Monegato,et al. Stieltjes Polynomials and Related Quadrature Rules , 1982 .
[14] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .