Test facilities for high-power electric propulsion

Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

[1]  J. Bohdansky,et al.  Light‐ion sputtering yields for molybdenum and gold at low energies , 1977 .

[2]  V. K. Rawlin,et al.  Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster , 1978 .

[3]  Michael J. Patterson,et al.  5kW xenon ion thruster lifetest , 1990 .

[4]  M. Mantenieks,et al.  Sputtering in mercury ion thrusters , 1979 .

[5]  R. R. Robson,et al.  Status of xenon ion propulsion technology , 1987 .

[6]  E. L. James,et al.  Results of the Mission Profile Life Test first test segment - Thruster J1 , 1981 .

[7]  Gary L. Bennett,et al.  Enhancing Space Transportation: The NASA Program To Develop Electric Propulsion , 1990 .

[8]  Michael J. Patterson,et al.  Performance and optimization of a derated ion thruster for auxiliary propulsion , 1991 .

[9]  R. R. Robson,et al.  Status of xenon ion propulsion technology , 1987 .

[10]  R. J. Checkley,et al.  Radiation cooled MPD arc thruster , 1969 .

[11]  C. Collett Thruster endurance test , 1976 .

[12]  T. W. Haag Thrust stand for high‐power electric propulsion devices , 1991 .

[13]  R. B. Cohen,et al.  ELITE systems analysis , 1990 .

[14]  S. Knowles,et al.  Design, testing, and integration of a flight-ready hydrazine arcjet system , 1989 .

[15]  Roger M. Myers,et al.  MPD thruster technology , 1991 .

[16]  E. L. James,et al.  Results of the Mission Profile Life Test - First Test Segment: Thruster J1 , 1982 .

[17]  L. E. Valby,et al.  MFTF vacuum vessel and cryopumping system , 1980 .

[18]  Yusuke Nakamura,et al.  ETS-III ion engine flight operations in the extended mission period , 1985 .

[19]  J. Beattie,et al.  Mercury ion thruster technology , 1989 .

[20]  R. P. Nagorski,et al.  An evaluation of nuclear electric propulsion for planetary exploration missions , 1981 .

[21]  E. L. James,et al.  The cesium bombardment engine north-south stationkeeping experiment on ATS-6 , 1975 .

[22]  William C. Guss,et al.  High throughput electric thruster test stand design , 1987 .

[23]  James S. Sovey,et al.  Performance and lifetime assessment of magnetoplasmadynamic arc thruster technology , 1991 .

[24]  L. W. Carlson,et al.  Evaluation of a steady state MPD thruster test facility , 1985 .

[25]  James S. Sovey,et al.  Electromagnetic emission experiences using electric propulsion systems , 1989 .

[26]  S. Kitamura,et al.  ETS-III ion engine flight operations in the extended mission period , 1986 .

[27]  L. R. Ignaczak,et al.  Qualification and testing of an electrically propelled spacecraft - SERT 2 , 1971 .

[28]  L. Valby,et al.  The (changing) MFTF vacuum environment , 1982 .

[29]  T. A. Kozman,et al.  MFTF-B PACE tests and final cost report , 1986 .

[30]  James S. Sovey,et al.  Performance and lifetime assessment of MPD arc thruster technology , 1988 .

[31]  Michael J. Patterson,et al.  Ion beam sputtering in electric propulsion facilities , 1991 .

[32]  Jerry W. Gerich The design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility , 1986 .

[33]  Roger M. Myers,et al.  Applied-field MPD thruster geometry effects , 1991 .

[34]  R. C. Finke,et al.  Space Environment Facility for Electric Propulsion Systems Research , 1965 .

[35]  P. Wilbur A model for nitrogen chemisorption in ion thrusters , 1979 .