A Hierarchical Allometric Scaling Analysis of Chinese Cities: 1991–2014

The law of allometric scaling based on Zipf distributions can be employed to research hierarchies of cities in a geographical region. However, the allometric patterns are easily influenced by random disturbance from the noises in observational data. In theory, both the allometric growth law and Zipf’s law are related to the hierarchical scaling laws associated with fractal structure. In this paper, the scaling laws of hierarchies with cascade structure are used to study Chinese cities, and the method of analysis is applied to analyzing the change trend of the allometric scaling exponents. The results show that the hierarchical scaling relations of Chinese cities became clearer and clearer from 1991 to 2014 year; the global allometric scaling exponent values fluctuated around 0.85, and the local scaling exponent approached 0.85. The Hurst exponent of the allometric parameter change is greater than 0.5, indicating persistence and a long-term memory of urban evolution. The main conclusions can be reached as follows: the allometric scaling law of cities represents an evolutionary order rather than an invariable rule, which emerges from self-organized process of urbanization, and the ideas from allometry and fractals can be combined to optimize spatial and hierarchical structure of urban systems in future city planning.

[1]  Campbell B. Read,et al.  Zipf's Law , 2004 .

[2]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[3]  Power law in firms bankruptcy , 2007, physics/0701302.

[4]  Y Lee,et al.  An Allometric Analysis of the US Urban System: 1960 – 80 , 1989, Environment & planning A.

[5]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[6]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[7]  Bin Jiang,et al.  Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information , 2010, Int. J. Geogr. Inf. Sci..

[8]  Yanguang Chen The evolution of Zipf’s law indicative of city development , 2015, 1504.04229.

[9]  L. Bettencourt,et al.  Supplementary Materials for The Origins of Scaling in Cities , 2013 .

[10]  Ernst Kleinert,et al.  The Size of Г , 2000 .

[11]  D. Helbing,et al.  Growth, innovation, scaling, and the pace of life in cities , 2007, Proceedings of the National Academy of Sciences.

[12]  P. Krugman Confronting the Mystery of Urban Hierarchy , 1996 .

[13]  Yannis M. Ioannides,et al.  The Evolution of City Size Distributions , 2004 .

[14]  Kausik Gangopadhyay,et al.  City size distributions for India and China , 2009, 1001.0828.

[15]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[16]  K. Davis,et al.  World urbanization, 1950-1970 , 1969 .

[17]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[18]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[19]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[20]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[21]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[22]  Yanguang Chen An allometric scaling relation based on logistic growth of cities , 2014 .

[23]  Zipf rank approach and cross-country convergence of incomes , 2011 .

[24]  Yanguang Chen,et al.  Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals , 2010 .

[25]  P. M. Shearer,et al.  Zipf Distribution of U . S . Firm Sizes , 2022 .

[26]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[27]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[28]  Glenn R. Carroll,et al.  National city-size distributions , 1982 .

[29]  L. Bettencourt,et al.  Urban Scaling and the Production Function for Cities , 2013, PloS one.

[30]  Yanguang Chen THE SPATIAL MEANING OF PARETO'S SCALING EXPONENT OF CITY-SIZE DISTRIBUTIONS , 2014 .

[31]  Philipp Nadel,et al.  Hierarchy In Natural And Social Sciences , 2016 .

[32]  M. Batty Rank clocks , 2006, Nature.

[33]  Ying Ge,et al.  The size distribution of Chinese cities , 2005 .

[34]  A. Henderson‐sellers,et al.  Albedo and its importance in climate theory , 1982 .

[35]  R. Mantegna,et al.  Zipf plots and the size distribution of firms , 1995 .

[36]  W. Marsden I and J , 2012 .

[37]  S. Schumm EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY , 1956 .

[38]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[39]  Yanguang Chen,et al.  The mathematical relationship between Zipf’s law and the hierarchical scaling law , 2012 .

[40]  Bin Jiang,et al.  Hierarchical Scaling in Systems of Natural Cities , 2016, Entropy.

[41]  Yanguang Chen Zipf's Law, Hierarchical Structure, and Cards-Shuffling Model for Urban Development , 2011 .

[42]  Yichun Xie,et al.  Re-examination of Zipf’s law and urban dynamic in China: a regional approach , 2012 .

[43]  Denise McGrath,et al.  Fractals , 2018, Nonlinear Analysis for Human Movement Variability.

[44]  X. Gabaix Zipf's Law and the Growth of Cities , 1999 .

[45]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[46]  Bin Jiang,et al.  Zipf's law for all the natural cities in the United States: a geospatial perspective , 2010, Int. J. Geogr. Inf. Sci..

[47]  L. Benguigui,et al.  A dynamic model for city size distribution beyond Zipf 's law , 2007 .

[48]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[49]  C. Lo,et al.  CHINESE URBAN POPULATION ESTIMATES , 1977 .

[50]  Yanguang Chen Fractals and fractal dimension of systems of blood vessels: An analogy between artery trees, river networks, and urban hierarchies , 2015, 1511.02276.

[51]  Lucien Benguigui,et al.  Beyond the power law - a new approach to analyze city size distributions , 2007, Comput. Environ. Urban Syst..

[52]  Yanguang Chen,et al.  Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents , 2010 .

[53]  Denise Pumain,et al.  City size distributions and metropolisation , 1997 .

[54]  Bin Jiang,et al.  Geospatial analysis and modelling of urban structure and dynamics , 2010 .

[55]  A. Plastino,et al.  Zipf's law from a Fisher variational-principle , 2009, 0908.0501.

[56]  T. V. McEvilly Seismicity of the earth and associated phenomena , 1967 .

[57]  Stig Nordbeck,et al.  URBAN ALLOMETRIC GROWTH , 1971 .

[58]  Martin J. Beckmann,et al.  City Hierarchies and the Distribution of City Size , 1958, Economic Development and Cultural Change.

[59]  M. Batty The Size, Scale, and Shape of Cities , 2008, Science.

[60]  Yanguang Chen,et al.  Fractal analytical approach of urban form based on spatial correlation function , 2013 .

[61]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .