Evaluation of DTRF2014, ITRF2014, and JTRF2014 by Precise Orbit Determination of SLR Satellites

In 2016, three new realizations of the International Terrestrial Reference System (ITRS), namely, DTRF2014, ITRF2014, and JTRF2014, have been released. In this paper, we evaluate these ITRS realizations for precise orbit determination of ten high and low Earth orbiting geodetic satellites using satellite laser ranging (SLR) observations. We show the reduction of observation residuals and estimated range biases, when using these new ITRS realizations, as compared with the previous ITRS realization for SLR stations—SLRF2008. Thus, the mean SLR root-mean-square (RMS) fits reduce (improve), on average over all satellites tested, by 3%, 3.6%, 8.1%, and 7.7% at 1993.0–2015.0, when using ITRF2014, DTRF2014, and DTRF2014 with non-tidal loading (NTL), and JTRF2014 realizations, respectively. The improvement of the RMS fits is even larger at 2015.0–2017.0: 14% and 15.5% using ITRF2014 and DTRF2014, respectively. For the altimetry satellite Jason-2, we found improvements in the RMS and mean of the sea surface height crossover differences with the new ITRS realizations, as compared with SLRF2008. We show that JTRF2014, after an editing done for SLR stations Conception and Zimmerwald, and DTRF2014 with NTL corrections result in the smallest RMS and absolute mean fits of SLR observations indicating the best performance among the ITRS realizations tested, while using SLRF2008 and ITRF2014 causes a 0.2–0.3 mm/y trend in the mean of SLR fits at 2001.0–2017.0.

[1]  Sergei Rudenko,et al.  A new phase in the production of quality-controlled sea level data , 2017 .

[2]  T. M. Chin,et al.  KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization , 2015 .

[3]  Toshimichi Otsubo,et al.  Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES , 2014, Journal of Geodesy.

[4]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[5]  Manuela Seitz,et al.  The new DGFI-TUM realization of the ITRS: DTRF2014 (data) , 2016 .

[6]  Toshimichi Otsubo,et al.  System‐dependent center‐of‐mass correction for spherical geodetic satellites , 2003 .

[7]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[8]  Jean-Charles Marty,et al.  A new combined global gravity field model including GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse , 2010 .

[9]  Peter Steigenberger,et al.  GGOS Bureau of Products and Standards: Inventory of standards and conventions , 2015 .

[10]  Nikita P. Zelensky,et al.  Estimated SLR station position and network frame sensitivity to time-varying gravity , 2014, Journal of Geodesy.

[11]  Sergei Rudenko,et al.  Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends , 2014 .

[12]  W. Folkner,et al.  The Planetary and Lunar Ephemeris DE 421 , 2009 .

[13]  S. Esselborn,et al.  Impact of Atmospheric and Oceanic De-aliasing Level-1B (AOD1B) products on precise orbits of altimetry satellites and altimetry results , 2016 .

[14]  Shailen D. Desai,et al.  Observing the pole tide with satellite altimetry , 2002 .

[15]  Manuela Seitz,et al.  The 2008 DGFI realization of the ITRS: DTRF2008 , 2012, Journal of Geodesy.

[16]  Sergei Rudenko,et al.  Improvements in Precise Orbits of Altimetry Satellites and Their Impact on Mean Sea Level Monitoring , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[17]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[18]  M. Seitz,et al.  DGFI-TUM Analysis and Scale Investigations of the Latest Terrestrial Reference Frame Realizations , 2018 .

[19]  B. Tapley,et al.  Earth radiation pressure effects on satellites , 1988 .

[20]  M. Seitz,et al.  Global Terrestrial Reference Systems and Their Realizations , 2013 .

[21]  W. Bosch,et al.  EOT11A - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry , 2008 .

[22]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[23]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[24]  Pascal Willis,et al.  The International DORIS Service (IDS): Toward maturity , 2010 .

[25]  Manuela Seitz,et al.  Consistent estimation of geodetic parameters from SLR satellite constellation measurements , 2018, Journal of Geodesy.

[26]  The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth , 2015 .

[27]  H. Schuha,et al.  VLBI: A fascinating technique for geodesy and astrometry , 2013 .

[28]  Christian Schwatke,et al.  Multi-Mission Cross-Calibration of Satellite Altimeters: Constructing a Long-Term Data Record for Global and Regional Sea Level Change Studies , 2014, Remote. Sens..

[29]  Vincenza Luceri,et al.  Overview of the ILRS Contribution to the Development of ITRF2013 , 2015 .

[30]  Johannes Bouman,et al.  Estimation of the Earth`s gravity field by combining normal equation matrices from GRACE and SLR , 2014 .

[31]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[32]  William J. Burke,et al.  A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices , 2008 .

[33]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[34]  Z. Altamimi,et al.  Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014 , 2016, Journal of Geodesy.

[35]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[36]  R. Penrose,et al.  A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model , 2016, The European physical journal. C, Particles and fields.