Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight.

The feasibility of making space-based carbon dioxide (CO2) measurements for global and regional carbon-cycle studies is explored. With the proposed detection method, we use absorption of reflected sunlight near 1.58 microm. The results indicate that the small (degrees 1%) changes in CO2 near the Earth's surface are detectable provided that an adequate sensor signal-to-noise ratio and spectral resolution are achievable. Modification of the sunlight path by scattering of aerosols and cirrus clouds could, however, lead to systematic errors in the CO2 column retrieval; therefore ancillary aerosol and cloud data are important to reduce errors. Precise measurement of surface pressure and good knowledge of the atmospheric temperature profile are also required.

[1]  B T Tolton,et al.  Sensitivity of radiometric measurements of the atmospheric CO2 column from space. , 2001, Applied optics.

[2]  J. H. Park,et al.  Atmospheric CO(2) monitoring from space. , 1997, Applied optics.

[3]  H E Fleming,et al.  Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres. , 1976, Applied optics.

[4]  S. Asano,et al.  Light scattering properties of spheroidal particles. , 1979, Applied optics.

[5]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .

[6]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[7]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[8]  Michael J. Prather,et al.  CO2 source inversions using satellite observations of the upper troposphere , 2001 .

[9]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part I: Theory , 2000 .

[10]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[11]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[12]  U. Schmidt,et al.  In situ measurements of carbon dioxide in the winter Arctic vortex and at midlatitudes: An indicator of the ‘age’ of stratopheric air , 1991 .

[13]  R. M. Mitchell,et al.  Error Estimates for Passive Satellite Measurement of Surface Pressure Using Absorption in the A Band of Oxygen , 1987 .

[14]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[15]  M. Chahine Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters , 1970 .

[16]  G. Toon,et al.  Spaceborne measurements of atmospheric CO2 by high‐resolution NIR spectrometry of reflected sunlight: An introductory study , 2002 .

[17]  R. M. Mitchell,et al.  Airborne Measurements of Air Mass from O2 A-Band Absorption Spectra , 1998 .

[18]  N Spinelli,et al.  Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region. , 2000, Applied optics.

[19]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[20]  W. Smith,et al.  Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. , 1970, Applied optics.

[21]  P. Rayner,et al.  The utility of remotely sensed CO2 concentration data in surface source inversions , 2001 .

[22]  Steven Pawson,et al.  Global CO2 transport simulations using meteorological data from the NASA data assimilation system , 2004 .

[23]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[24]  François-Marie Bréon,et al.  Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis. , 2003, Applied optics.

[25]  Teruo Aoki,et al.  Trace gas remote sounding from near IR sun glint observation with tunable etalons , 1993 .

[26]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[27]  M. Iacono,et al.  Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons , 1995 .

[28]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[29]  Gloor,et al.  A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models , 2022 .

[30]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[31]  S. Running,et al.  Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. , 2000, Science.

[32]  Bernard Pinty,et al.  Extracting information on surface properties from bidirectional reflectance measurements , 1991 .

[33]  Laurence S. Rothman,et al.  Atmospheric Spectral Transmittance And Radiance: FASCOD1 B , 1981, Other Conferences.

[34]  C. Tucker,et al.  A large carbon sink in the woody biomass of Northern forests , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Patrick Minnis,et al.  Comparison of regional clear-sky albedos inferred from satellite-observations and model computations , 1986 .

[36]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[37]  Zhian Sun,et al.  Studies of the radiative properties of ice and mixed-phase clouds , 1994 .

[38]  Christopher D. Barnet,et al.  Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: Retrieval and cloud clearing methodology , 1998 .

[39]  Takakiyo Nakazawa,et al.  Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide , 1991 .

[40]  H E Fleming,et al.  Atmospheric transmittance of an absorbing gas. 2: A computationally fast and accurate transmittance model for slant paths at different zenith angles. , 1977, Applied optics.

[41]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part II: Application to Remote Sensing in the O2 A band , 2000 .

[42]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[43]  Dylan B. A. Jones,et al.  Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: Quantitative evidence for a subtropical “barrier” to horizontal transport , 2001 .