Eurographics/ Ieee-vgtc Symposium on Visualization (2006) Path Line Oriented Topology for Periodic 2d Time-dependent Vector Fields
暂无分享,去创建一个
Hans-Peter Seidel | Hans-Christian Hege | Holger Theisel | Helwig Hauser | Tino Weinkauf | Kuangyu Shi | T. Ertl | Ken Joy | Beatriz Santos | K. Shi | H. Theisel | T. Weinkauf | H. Hauser | H.-C Hege | H.-P Seidel
[1] J. Debonis,et al. Low Dimensional Modeling of Flow for Closed-Loop Flow Control , 2003 .
[2] W. Ditto,et al. Chaos: From Theory to Applications , 1992 .
[3] Christian Rössl,et al. Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.
[4] Rüdiger Westermann,et al. Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..
[5] Hans Hagen,et al. Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.
[6] Eduard Gröller,et al. Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..
[7] Lambertus Hesselink,et al. Representation and display of vector field topology in fluid flow data sets , 1989, Computer.
[8] Helwig Loffelmann,et al. Visualizing Local Properties and Characteristic Structures of Dynamical Systems , 1998 .
[9] Al Globus,et al. A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.
[10] Helwig Löffelmann,et al. Visualizing Poincaré Maps together with the Underlying Flow , 1997, VisMath.
[11] W. D. Leeuw,et al. Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .
[12] Hans Hagen,et al. A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[13] Hans Hagen,et al. Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..
[14] Hans-Peter Seidel,et al. Topological methods for 2D time-dependent vector fields based on stream lines and path lines , 2005, IEEE Transactions on Visualization and Computer Graphics.
[15] Gerik Scheuermann,et al. Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..
[16] Robert van Liere,et al. Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[17] Hans-Peter Seidel,et al. Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.
[18] HesselinkLambertus,et al. Representation and Display of Vector Field Topology in Fluid Flow Data Sets , 1989 .
[19] Holger Theisel. Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.
[20] Hans-Peter Seidel,et al. Feature Flow Fields , 2003, VisSym.
[21] Hans-Peter Seidel,et al. Topological Construction and Visualization of Higher Order 3D Vector Fields , 2004, Comput. Graph. Forum.
[22] Hans Hagen,et al. Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..
[23] Lukas Mroz,et al. Studying basin bifurcations in nonlinear triopoly games by using 3D visualization , 2001 .
[24] Suresh K. Lodha,et al. Topology preserving compression of 2D vector fields , 2000 .
[25] Bernd Hamann,et al. Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.
[26] Hans-Peter Seidel,et al. Extracting higher order critical points and topological simplification of 3D vector fields , 2005, VIS 05. IEEE Visualization, 2005..
[27] Hans-Peter Seidel,et al. Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..
[28] Robert van Liere,et al. Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.
[29] Xavier Tricoche,et al. Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.
[30] Helwig Löffelmann,et al. Visualizing Dynamical Systems near Critical Points , 1998 .
[31] Gerik Scheuermann,et al. Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..
[32] Hans-Christian Hege,et al. amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.
[33] Hans-Peter Seidel,et al. Topological simplification of 3D vector fields and extracting higher order critical points , 2005 .
[34] Suresh K. Lodha,et al. Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[35] Hans-Peter Seidel,et al. Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..
[36] Hans Hagen,et al. A topology simplification method for 2D vector fields , 2000 .