High-entropy alloy: challenges and prospects

High-entropy alloys (HEAs) are presently of great research interest in materials science and engineering. Unlike conventional alloys, which contain one and rarely two base elements, HEAs comprise multiple principal elements, with the possible number of HEA compositions extending considerably more than conventional alloys. With the advent of HEAs, fundamental issues that challenge the proposed theories, models, and methods for conventional alloys also emerge. Here, we provide a critical review of the recent studies aiming to address the fundamental issues related to phase formation in HEAs. In addition, novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism, and superconductivity. Due to their considerable structural and functional potential as well as richness of design, HEAs are promising candidates for new applications, which warrants further studies.

[1]  Douglas L. Irving,et al.  A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures , 2015 .

[2]  T. Nieh,et al.  Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system , 2014 .

[3]  C. Li,et al.  Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys , 2009 .

[4]  Wei Zhang,et al.  Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys , 2013, Entropy.

[5]  T. Chin,et al.  Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements , 2004 .

[6]  C. Wen,et al.  Simultaneously enhanced strength and ductility of Cu–xGe alloys through manipulating the stacking fault energy (SFE) , 2013 .

[7]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[8]  Shou-Yi Chang,et al.  Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements , 2007 .

[9]  M. E. Kassner,et al.  Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening , 2009 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  David E. Alman,et al.  Searching for Next Single-Phase High-Entropy Alloy Compositions , 2013, Entropy.

[12]  S. Rice,et al.  ADVANCES IN CHEMICAL PHYSICS , 2002 .

[13]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[14]  Yuan-Sheng Huang,et al.  On the elemental effect of AlCoCrCuFeNi high-entropy alloy system , 2007 .

[15]  Uichiro Mizutani,et al.  The Hume-Rothery Rules for Structurally Complex Alloy Phases , 2010 .

[16]  L. Battezzati,et al.  Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems , 2014 .

[17]  Z. Jagličić,et al.  Discovery of a superconducting high-entropy alloy. , 2014, Physical review letters.

[18]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[19]  Y. Hsu,et al.  Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution , 2005 .

[20]  Zhongyi Liu,et al.  Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system , 2010 .

[21]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[22]  P. Liaw,et al.  Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys , 2012 .

[23]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[24]  Tao Zhang,et al.  Glass-forming ability of alloys , 1993 .

[25]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[26]  Wei Zhang,et al.  High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams , 2014 .

[27]  水谷 宇一郎,et al.  Hume-Rothery rules for structurally complex alloy phases , 2011 .

[28]  Jian Lu,et al.  High‐Strength and High‐Ductility Nanostructured and Amorphous Metallic Materials , 2014, Advanced materials.

[29]  M. Telford The case for bulk metallic glass , 2004 .

[30]  Douglas L. Irving,et al.  Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy , 2013 .

[31]  B. S. Murty,et al.  Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy , 2011 .

[32]  H. Ding,et al.  High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass , 2013 .

[33]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[34]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[35]  Ching-Tung Hsu,et al.  The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiB x , 2007 .

[36]  Y. S. Huang,et al.  Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys , 2007 .

[37]  A. Inoue,et al.  Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys , 2002 .

[38]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[39]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[40]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[41]  T. Shun,et al.  Formation of ordered/disordered nanoparticles in FCC high entropy alloys , 2010 .

[42]  J. Yeh,et al.  Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys , 2006 .

[43]  Sheng Guo,et al.  Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys , 2013 .

[44]  L. Angelani,et al.  Configurational entropy of hard spheres , 2005, cond-mat/0506447.

[45]  Q. Jiang,et al.  Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys , 2013 .

[46]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[47]  Wei-Liang Wang,et al.  The effects of TMT faultline configuration on a firm’s short-term performance and innovation activities , 2015 .

[48]  Jia She,et al.  Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys , 2010 .

[49]  Michael D. Uchic,et al.  Exploration and Development of High Entropy Alloys for Structural Applications , 2014, Entropy.

[50]  Jian Lu,et al.  Design of high entropy alloys: A single-parameter thermodynamic rule , 2015 .

[51]  Chuan Zhang,et al.  Computational Thermodynamics Aided High-Entropy Alloy Design , 2012, JOM.

[52]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[53]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[54]  Brian Cantor,et al.  Multicomponent and High Entropy Alloys , 2014, Entropy.

[55]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[56]  Weihua Wang,et al.  High mixing entropy bulk metallic glasses , 2011 .

[57]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[58]  Jien-Wei Yeh,et al.  Microstructure and Properties of Al0.5CoCrCuFeNiTix (x=0–2.0) High-Entropy Alloys , 2006 .

[59]  C. Li,et al.  B2 structure of high-entropy alloys with addition of Al , 2008 .

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[62]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[63]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[64]  C. T. Liu,et al.  A geometric model for intrinsic residual strain and phase stability in high entropy alloys , 2015 .

[65]  Fu Lee Wang,et al.  Atomic packing efficiency and phase transition in a high entropy alloy , 2009 .

[66]  Rolf E. Hummel Understanding materials science , 1998 .

[67]  Tongmin Wang,et al.  Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot , 2014 .

[68]  K. Hsieh,et al.  The microstructure and phase equilibrium of new high performance high-entropy alloys , 2009 .

[69]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[70]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[71]  David Cebon,et al.  Materials: Engineering, Science, Processing and Design , 2007 .

[72]  Yong Zhang,et al.  Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification , 2012, Metallurgical and Materials Transactions A.

[73]  Jian Lu,et al.  The generalized thermodynamic rule for phase selection in multicomponent alloys , 2015 .

[74]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[75]  Jian Lu,et al.  Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys , 2014 .

[76]  Zikang Tang,et al.  Guidelines in predicting phase formation of high-entropy alloys , 2014 .

[77]  Dierk Raabe,et al.  A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility , 2014 .

[78]  Jien-Wei Yeh,et al.  Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys , 2012 .

[79]  W. Smith Foundations of Materials Science and Engineering , 1993 .

[80]  R. Swalin,et al.  Thermodynamics of Solids , 1963 .

[81]  A. Takeuchi,et al.  Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter , 2011 .

[82]  J. B. Zhu,et al.  Microstructure and the properties of FeCoCuNiSnx high entropy alloys , 2012 .

[83]  Jien-Wei Yeh,et al.  Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys , 2015 .

[84]  Y. Zhou,et al.  Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys , 2008 .

[85]  Jien-Wei Yeh,et al.  Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy , 2006 .

[86]  Akihiko Hirata,et al.  Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy , 2015 .

[87]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[88]  J. Yeh,et al.  FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys , 2006 .

[89]  Yi Qiao,et al.  Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys , 2007 .

[90]  A. Hirata,et al.  Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys , 2013 .

[91]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[92]  M. Feuerbacher,et al.  Hexagonal High-entropy Alloys , 2014, 1408.0100.

[93]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[94]  Jicheng He,et al.  Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys , 2013 .