Improved Capacity Retention for LiVO2 by Cr Substitution

We present a layered Li-intercalation oxide that operates on the V3+/V4+ redox couple. The stabilization effect of adding a +3 element into the layered LiVO2 has been studied by first principles calculations. We identified Cr substitution into LiVO2 to be promising for stabilizing a layered material based on the V redox couple. Layered LiCrxV1-xO2 (x = 0.1, 0.2, 0.4, 0.5) has been synthesized and tested electrochemically. The improved capacity retention confirms that the structural stability of delithiated LiVO2 is improved by Cr doping.

[1]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[2]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[3]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[4]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[5]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[6]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[7]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[8]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[9]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[10]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[11]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[12]  M. Osada,et al.  Synthesis and electrochemistry of new layered (1 − x)LiVO2·xLi2TiO3 (0 ≤ x ≤ 0.6) electrode materials , 2007 .

[13]  Zhenxiang Cheng,et al.  Structural modifications caused by electrochemical lithium extraction for two types of layered LiVO2 (R3¯m) , 2007 .

[14]  Y. Meng,et al.  Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2 , 2007 .

[15]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[16]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[17]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[18]  H. Yamaguchi,et al.  Preparation and electrochemical properties of the layered material of LixVyO2 (x = 0.86 and y = 0.8) , 2006 .

[19]  Y. Koyama,et al.  Solid-State Chemistry and Electrochemistry of LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2 for Advanced Lithium-Ion Batteries II. Preparation and Characterization , 2005 .

[20]  G. Ceder,et al.  Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. , 2004, Chemical reviews.

[21]  B. Fultz,et al.  A transmission electron microscopy study of cycled LiCoO2 , 2003 .

[22]  T. Ohzuku,et al.  Lithium insertion material of LiNi 1/2Mn 1/2O 2 for advanced lithium-ion batteries , 2003 .

[23]  A. Manthiram,et al.  Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes , 2002 .

[24]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[25]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[26]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[27]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[28]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[29]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[30]  Alan V. Chadwick,et al.  On the behavior of the LixNiO2 system: an electrochemical and structural overview , 1997 .

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[33]  M. Broussely,et al.  LixNiO2, a promising cathode for rechargeable lithium batteries , 1995 .

[34]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[35]  A. Manthiram,et al.  Chemical synthesis and properties of Li1−δ−xNi1+δO2 and Li[Ni2]O4 , 1992 .

[36]  Dutta,et al.  Lattice instabilities near the critical V-V separation for localized versus itinerant electrons in LiV1-yMyO2 (M=Cr or Ti) Li1-xVO2. , 1991, Physical review. B, Condensed matter.

[37]  John B. Goodenough,et al.  Structural refinement of delithiated LiVO2 by neutron diffraction , 1987 .

[38]  J. Goodenough,et al.  Structural characterization of delithiated LiVO2 , 1984 .

[39]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[40]  M. Whittingham,et al.  Crystal Structure and Chemical Bonding in Inorganic Chemistry , 1976 .

[41]  Roman Jackiw,et al.  Intermediate Quantum Mechanics , 1973 .

[42]  I. J. Good,et al.  Intermediate Quantum Mechanics , 1966 .

[43]  W. H. Barnes,et al.  The crystal structure of vanadium pentoxide , 1961 .

[44]  A. L. Loeb,et al.  Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels , 1955 .