Direct Design of Closed-loop Demodulators for Amplitude Modulation Atomic Force Microscopy

A fundamental component of the z-axis feedback loop in amplitude modulation atomic force microscopy is the demodulator. It dictates both bandwidth and noise in the amplitude and phase estimate of the cantilever deflection signal. In this paper, we derive a linear time-invariant model of a closed-loop demodulator with user definable tracking bandwidth and sensitivity to other frequency components. A direct demodulator design method is proposed based on the reformulation of the Lyapunov filter as a modulated-demodulated controller in closed loop with a unity plant. Simulation and experimental results for a higher order Lyapunov filter as well as Butterworth and Chebyshev type demodulators are presented.

[1]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[2]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[4]  E. Nauman,et al.  Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. , 2011, Nature nanotechnology.

[5]  Robert Forchheimer,et al.  Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy , 2015, Nature Communications.

[6]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[7]  S. O. Reza Moheimani,et al.  High-Bandwidth Demodulation in Multifrequency AFM : A Kalman Filtering Approach , 2016 .

[8]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[9]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[10]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[11]  C R Cosens,et al.  A balance-detector for alternating-current bridges , 1934 .

[12]  Michael G. Ruppert,et al.  A review of demodulation techniques for amplitude-modulation atomic force microscopy , 2017, Beilstein journal of nanotechnology.

[13]  Michael G. Ruppert,et al.  Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy , 2018, Beilstein journal of nanotechnology.

[14]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[15]  Sangmin An,et al.  Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air , 2014, Beilstein journal of nanotechnology.

[16]  S. O. R. Moheimani,et al.  Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .

[17]  S. O. Reza Moheimani,et al.  A Kalman Filter for Amplitude Estimation in High-Speed Dynamic Mode Atomic Force Microscopy , 2016, IEEE Transactions on Control Systems Technology.

[18]  Jan Tommy Gravdahl,et al.  Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy , 2018, IEEE Transactions on Control Systems Technology.

[19]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .