Sp(3,R) mean field theory for heavy deformed nuclei

Algebraic mean field theory (AMFT) for the symplectic $\mathrm{sp}(3,R)$ algebra is used to derive collective rotational bands in the Riemann ellipsoidal approximation. AMFT is formulated in terms of symplectic density matrices that are defined by the quantum mechanical expectations of the $\mathrm{sp}(3,R)$ operators. The mean field approximation restricts the densities to a coadjoint orbit of the canonical transformation group $\mathrm{Sp}(3,R).$ For principal axis rotation, a system of three algebraic equations is derived from energy minimization on an orbit surface. The system is solved self-consistently for the axis lengths and the potential tensor.

[1]  G. Rosensteel,et al.  Circulation of a triaxial, charged ellipsoidal droplet , 2002 .

[2]  G. Rosensteel,et al.  Sp(3, R) coadjoint orbit theory , 2002 .

[3]  G. Rosensteel Sp ( 3 , R ) mean field theory , 2002 .

[4]  G. Rosensteel,et al.  SU(3) mean field Hamiltonian , 2002 .

[5]  G. Rosensteel,et al.  SU(3) normal mode theory , 2001 .

[6]  G. Rosensteel,et al.  SU(3) density matrix theory , 2001, nucl-th/0101049.

[7]  Leviatan,et al.  Partial dynamical symmetry in a fermion system , 2000, Physical review letters.

[8]  J. Troupe,et al.  Gauge theory of Riemann ellipsoids , 1999, math-ph/9909031.

[9]  A. Kirillov Merits and demerits of the orbit method , 1999 .

[10]  J. Draayer,et al.  ELECTRON SCATTERING AND MULTI-HOMEGA CORRELATIONS , 1999 .

[11]  J. Escher Electron scattering and multi-shell correlations: a symplectic shell-model study , 1999 .

[12]  Orsay,et al.  Period of the gamma-ray staggering in the 150Gd superdeformed region , 1999, nucl-th/9901093.

[13]  France.,et al.  Generalized Routhian calculations within the Skyrme-Hartree-Fock approximation , 1999, nucl-th/9901050.

[14]  D. Rowe,et al.  Branching rules for restriction of the Weil representations of Sp(n,R) to its maximal parabolic subgroup CM(n) , 1998 .

[15]  J. Draayer,et al.  Fermion realization of the nuclear Sp(6,R) model , 1998 .

[16]  P. Hess Comparing Sp(2, R) with Sp(6, R) calculations , 1998 .

[17]  I. N. Mikhailov,et al.  Nuclear intrinsic vorticity and its coupling to global rotations , 1997 .

[18]  D. Rowe,et al.  Transverse form factors in the collective and symplectic models , 1997 .

[19]  P. Trávnícek,et al.  Graded contractions of symplectic Lie algebras in collective models , 1997 .

[20]  G. Rosensteel,et al.  Non-Abelian density functional theory , 1996 .

[21]  M. Carvalho,et al.  The Sp(3,R) representations of an A-particle nucleus , 1996 .

[22]  D. Rowe Dynamical symmetries of nuclear collective models , 1996 .

[23]  Mikhailov,et al.  Band Staggering in Some Superdeformed States and Intrinsic Vortical Motion. , 1995, Physical review letters.

[24]  D. Rowe,et al.  A symplectic model calculation of transverse electron scattering form factors for 24Mg , 1993 .

[25]  G. Rosensteel LAX REPRESENTATION OF RIEMANN ELLIPSOIDS , 1993 .

[26]  G. Rosensteel,et al.  KELVIN CIRCULATION IN A CRANKED ANISOTROPIC OSCILLATOR + BCS MEAN FIELD , 1993 .

[27]  Rosensteel Self-consistent anisotropic oscillator with cranked angular and vortex velocities. , 1992, Physical review. C, Nuclear physics.

[28]  Goodman,et al.  Riemann's theorem for quantum tilted rotors. , 1992, Physical review. C, Nuclear physics.

[29]  Rosensteel Transverse form factors in the Riemann rotational model. , 1990, Physical review. C, Nuclear physics.

[30]  D. Rowe,et al.  Exploration of U(3)-boson dynamics within the nuclear symplectic model☆ , 1989 .

[31]  G. Rosensteel Rapidly rotating nuclei as riemann ellipsoids , 1988 .

[32]  Nishimura,et al.  Collective rotational transverse current multipoles: Even-even nuclei. , 1988, Physical review. C, Nuclear physics.

[33]  P. Tikkanen,et al.  TRANSITION PROBABILITY FROM THE GROUND TO THE FIRST-EXCITED 2+ STATE OF EVEN–EVEN NUCLIDES , 2001 .

[34]  D. Rowe,et al.  An application of boson second quantization techniques to the calculation of electron scattering form factors , 1987 .

[35]  E. M. Guerra Rotational nuclear models and electron scattering , 1986 .

[36]  David J Rowe,et al.  Microscopic theory of the nuclear collective model , 1985 .

[37]  G. Rosensteel The nuclear volume observable , 1984 .

[38]  J. Draayer,et al.  Symplectic shell-model calculation for 24Mg , 1984 .

[39]  D. Rowe,et al.  The shell-model theory of nuclear rotational states , 1984 .

[40]  Jerry P. Draayer,et al.  Symplectic shell-model calculations for 20Ne with horizontal configuration mixing , 1984 .

[41]  D. Rowe,et al.  Density dynamics: A generalization of Hartree-Fock theory , 1983 .

[42]  D. Rowe,et al.  Rotational bands in the stretched sp(3, R) approximation , 1982 .

[43]  D. Rowe,et al.  Nondeterminantal Hartree-Fock theory , 1981 .

[44]  G. Rosensteel Hartree-Fock-Bogoliubov theory without quasiparticle vacua , 1981 .

[45]  D. Rowe,et al.  Collective rotational states in the symplectic shell model , 1981 .

[46]  David J Rowe,et al.  On the algebraic formulation of collective models III. The symplectic shell model of collective motion , 1980 .

[47]  David J Rowe,et al.  On the algebraic formulation of collective models. II. Collective and intrinsic submanifolds , 1980 .

[48]  D. Rowe,et al.  On the algebraic formulation of collective models. I. The mass quadrupole collective model , 1979 .

[49]  G. Rosensteel,et al.  Geometric quantization of the CM(3) model , 1979 .

[50]  B. Buck,et al.  Collective variables for the description of rotational motion in many particle systems , 1979 .

[51]  D. Rowe,et al.  Geometric derivation of the kinetic energy in collective models , 1979 .

[52]  David J Rowe,et al.  Nuclear Sp(3,R) model , 1977 .

[53]  O. L. Weaver,et al.  Nuclear rotational-vibrational collective motion with nonvanishing vortex-spin , 1976 .

[54]  D. Rowe,et al.  Collective motions in nuclei and the spectrum generating algebras T5 × SO(3), GL(3,R), and CM(3) , 1976 .

[55]  D. Rowe,et al.  The algebraic CM(3) model , 1976 .

[56]  N. Lebovitz Rotating Fluid Masses , 1967 .

[57]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[58]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .