What makes a good lung?

The functional capacity of the human lung as gas exchanger is to a large extent determined by structural design. Quantitative structure-function correlations can be established by morphometry. A very large surface of air-blood contact, together with a very thin tissue barrier, are required to permit adequate oxygen uptake under work conditions. However, these design features also pose problems, such as how to ventilate and perfuse this large surface evenly and efficiently, or how to ensure mechanical stability against surface forces with a minimum of supporting tissue. The discussion focuses on the extent to which novel design principles are used to overcome such problems by designing the airways as a fractal tree and the fibre support system as a tensegrity structure.

[1]  E. Weibel,et al.  Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. , 1999, Journal of applied physiology.

[2]  E. Weibel,et al.  Ultrastructural aspects of pulmonary edema. , 1988, Journal of thoracic imaging.

[3]  E. Weibel,et al.  Adaptive variation in the mammalian respiratory system in relation to energetic demand: VII. Flow of oxygen across the pulmonary gas exchanger , 1987 .

[4]  J A CLEMENTS,et al.  Pulmonary surface tension and alveolar stability. , 1961, Technical report. CRDLR. US Army Edgewood Arsenal Chemical Research and Development Laboratories.

[5]  E. Weibel,et al.  Principles and methods for the morphometric study of the lung and other organs. , 1963, Laboratory investigation; a journal of technical methods and pathology.

[6]  E. Weibel Mandelbrot’s Fractals and the Geometry of Life: A Tribute to Benoît Mandelbrot on his 80 th Birthday , 2005 .

[7]  F. Roughton,et al.  Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. , 1957, Journal of applied physiology.

[8]  Mayhew Tm,et al.  The new stereological methods for interpreting functional morphology from slices of cells and organs , 1991, Experimental physiology.

[9]  C. Hsia Quantitative morphology of compensatory lung growth , 2006, European Respiratory Review.

[10]  J. Piiper,et al.  Kinetics of O2 uptake and release by red cells in stopped-flow apparatus: effects of unstirred layer. , 1985, Respiration physiology.

[11]  E. Weibel Morphometric estimation of pulmonary diffusion capacity. I. Model and method. , 1970, Respiration physiology.

[12]  How to Stabilize the Pulmonary Alveoli: Surfactant or Fibers? , 1987 .

[13]  Wolfgang Kreyling,et al.  Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells , 2005, Environmental health perspectives.

[14]  D W RICHARDS,et al.  Right heart catheterization; its contributions to physiology and medicine. , 1957, Science.

[15]  C. R. Taylor,et al.  Oxygen transport during exercise in large mammals. II. Oxygen uptake by the pulmonary gas exchanger. , 1989, Journal of applied physiology.

[16]  S. Schürch,et al.  Relations among alveolar surface tension, surface area, volume, and recoil pressure. , 1987, Journal of applied physiology.

[17]  E. Weibel,et al.  Structural changes underlying compensatory increase of diffusing capacity after left pneumonectomy in adult dogs. , 1993, The Journal of clinical investigation.

[18]  C. Bohr Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion , 1909 .

[19]  C D Murray,et al.  The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Bernard Sapoval,et al.  Design of peripheral airways for efficient gas exchange , 2005, Respiratory Physiology & Neurobiology.

[21]  Bruce W. Knight,et al.  A MORPHOMETRIC STUDY ON THE THICKNESS OF THE PULMONARY AIR-BLOOD BARRIER , 1964, The Journal of cell biology.

[22]  C. R. Taylor,et al.  Adaptive variation in the mammalian respiratory system in relation to energetic demand: I. Introduction to problem and strategy , 1987 .

[23]  E R Weibel,et al.  Cell number and cell characteristics of the normal human lung. , 2015, The American review of respiratory disease.

[24]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[25]  K. Müller,et al.  Surfactant protein B in type II pneumocytes and intra-alveolar surfactant forms of human lungs. , 2004, American journal of respiratory cell and molecular biology.

[26]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[27]  Ewald R. Weibel,et al.  Symmorphosis: On Form and Function in Shaping Life , 2000 .

[28]  P. Burri,et al.  Development and growth of the lung , 2007 .

[29]  E. Weibel,et al.  Improvements in demonstration of lining layer of lung alveoli by electron microscopy. , 1969, Respiration physiology.

[30]  S. Schürch,et al.  Surfactant displaces particles toward the epithelium in airways and alveoli. , 1990, Respiration physiology.

[31]  Marianne Geiser,et al.  Particle Retention in Airways by Surfactant , 1990 .

[32]  Bernard Sapoval,et al.  Smaller is better—but not too small: A physical scale for the design of the mammalian pulmonary acinus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Unger,et al.  Smaller is better , 1998, Surgical Endoscopy.

[34]  E. Weibel Fractal geometry: a design principle for living organisms. , 1991, The American journal of physiology.

[35]  A. Cournand Pulmonary circulation; its control in man, with some remarks on methodology. , 1957, American heart journal.

[36]  S. Hadjimiltiades,et al.  Right Heart Catheterization , 2015 .

[37]  S. Schürch,et al.  Direct determination of volume- and time-dependence of alveolar surface tension in excised lungs. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Weibel Die Blutgefässanastomosen in der menschlichen Lunge , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[39]  Ewald R. Weibel,et al.  The ultrastructure of the normal human skeletal muscle , 1973, Pflügers Archiv.

[40]  R C Schroter,et al.  The prediction of pressure drop and variation of resistance within the human bronchial airways. , 1970, Respiration physiology.

[41]  E. Weibel,et al.  Fractals in Biology and Medicine , 1994 .

[42]  Matthias Ochs,et al.  The number of alveoli in the human lung. , 2004, American journal of respiratory and critical care medicine.

[43]  J. F. Meckel Archiv für Anatomie und Physiologie , 1826 .

[44]  E. Weibel Morphometry of the Human Lung , 1965, Springer Berlin Heidelberg.

[45]  Ewald R. Weibel,et al.  The pathway for oxygen : structure and function in the mammalian respiratory system , 1984 .

[46]  E. Weibel,et al.  Morphometric model for pulmonary diffusing capacity. I. Membrane diffusing capacity. , 1993, Respiration physiology.

[47]  E R Weibel,et al.  Structural and functional limits for oxygen supply to muscle. , 2000, Acta physiologica Scandinavica.

[48]  Matthias Ochs,et al.  Interactions of nanoparticles with pulmonary structures and cellular responses. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[49]  Jr. Harry W. Fritts Andre F. Cournand , 1990 .

[50]  Albert Gjedde,et al.  The pathway for oxygen in brain. , 2003, APMIS. Supplementum.

[51]  E. Weibel Practical methods for biological morphometry , 1979 .

[52]  M. Ochs,et al.  A brief update on lung stereology , 2006, Journal of microscopy.

[53]  E R Weibel,et al.  Recent stereological methods for cell biology: a brief survey. , 1990, The American journal of physiology.

[54]  E R Weibel,et al.  The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. , 1978, Respiration physiology.

[55]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[56]  Matthias Ochs,et al.  How much is there really? Why stereology is essential in lung morphometry. , 2007, Journal of applied physiology.

[57]  E. Weibel,et al.  Compensatory Lung Growth: Relationship to Postnatal Lung Growth and Adaptation in Destructive Lung Disease , 2004 .

[58]  D. Ingber Tensegrity I. Cell structure and hierarchical systems biology , 2003, Journal of Cell Science.

[59]  R. Mason,et al.  Alveolar type II cells. , 1977, Federation proceedings.

[60]  Gavin Perkins,et al.  2009 in review. , 2010, Resuscitation.

[61]  E. Weibel,et al.  Architecture of the Human Lung , 1962, Science.

[62]  E. Weibel The mystery of "non-nucleated plates" in the alveolar epithelium of the lung explained. , 1971, Acta anatomica.

[63]  R. E. Miles,et al.  Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae , 1976 .

[64]  J. Piiper,et al.  Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. , 1985, Journal of applied physiology.