Temporal expression divergence of network modules

Here we propose new module-based approaches to identify differentially regulated network sub-modules combining temporal trajectories of expression profiles with static network skeletons. Starting from modules identified by network clustering of static networks, our analysis refines pre-defined genesets by partitioning them into smaller homogeneous sets by non-paramettric Bayesian methods. Especially for case-control time series data we developed multi-time point discriminative models and identified each network module as a mixture or admixture of dynamic discriminative functions. Our results shows that our proposed approach outperformed existing geneset enrichment methods in simulation studies. Moreover we applied the methods to neural stem cell differentiation data, and discovered novel modules differentially perturbed in different developmental stages.

[1]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[3]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[4]  Junjun Zhang,et al.  BioMart: a data federation framework for large collaborative projects , 2011, Database J. Biol. Databases Curation.

[5]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[6]  Chong Wang,et al.  Variational inference in nonconjugate models , 2012, J. Mach. Learn. Res..

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[9]  Peter J. Woolf,et al.  GAGE: generally applicable gene set enrichment for pathway analysis , 2009, BMC Bioinformatics.

[10]  Yongjin Park,et al.  How networks change with time , 2012, Bioinform..

[11]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[12]  F. Gage,et al.  The glycans of stem cells. , 2007, Current opinion in chemical biology.

[13]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[14]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[15]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[16]  Theodore Friedmann,et al.  Purinergic signaling in human pluripotent stem cells is regulated by the housekeeping gene encoding hypoxanthine guanine phosphoribosyltransferase , 2012, Proceedings of the National Academy of Sciences.

[17]  Yun Li,et al.  Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of ‘date' and ‘party' hubs , 2013, Scientific Reports.

[18]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[19]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[20]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[21]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[22]  Yasuhiko Ikebe,et al.  Inversion of band matrices , 1979 .

[23]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[24]  Jin Woo Chang,et al.  Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[25]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[26]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[27]  G. Rybicki,et al.  An accelerated lambda iteration method for multilevel radiative transfer. I - Non-overlapping lines with background continuum , 1991 .

[28]  Wenguang Sun,et al.  Large‐scale multiple testing under dependence , 2009 .

[29]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[30]  K. Komurov,et al.  Revealing static and dynamic modular architecture of the eukaryotic protein interaction network , 2007, Molecular Systems Biology.

[31]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[32]  Theodore Friedmann,et al.  HPRT Deficiency Coordinately Dysregulates Canonical Wnt and Presenilin-1 Signaling: A Neuro-Developmental Regulatory Role for a Housekeeping Gene? , 2011, PloS one.

[33]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[34]  Wenguang Sun,et al.  Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control , 2007 .

[35]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[36]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[37]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[38]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[39]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[40]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[41]  M. Tyers,et al.  Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network , 2006, PLoS biology.

[42]  Chong Wang,et al.  Truncation-free Online Variational Inference for Bayesian Nonparametric Models , 2012, NIPS.

[43]  X. Song,et al.  B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1 , 2013, Cell Death and Disease.

[44]  Yongjin Park,et al.  The Housekeeping Gene Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) Regulates Multiple Developmental and Metabolic Pathways of Murine Embryonic Stem Cell Neuronal Differentiation , 2013, PloS one.

[45]  Charlotte M. Deane,et al.  Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks , 2009, PLoS Comput. Biol..

[46]  J. Bader,et al.  Dynamic Networks from Hierarchical Bayesian Graph Clustering , 2010, PloS one.

[47]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[48]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[49]  M. Tyers,et al.  Still Stratus Not Altocumulus: Further Evidence against the Date/Party Hub Distinction , 2007, PLoS biology.

[50]  Henryk Maciejewski,et al.  Gene set analysis methods: statistical models and methodological differences , 2013, Briefings Bioinform..

[51]  Jae-Min Lim,et al.  Regulation of Glycan Structures in Murine Embryonic Stem Cells , 2012, The Journal of Biological Chemistry.