Conformational analysis of supramolecular polymerization processes of disc-like molecules

N,N′,N′′-Trialkylbenzene-1,3,5-tricarboxamides (BTAs) cooperatively self-assemble into one-dimensional, helical supramolecular polymers in apolar alkane solutions. Previous studies revealed that the position and configuration of the methyl group on the aliphatic side-chain gives rise to an ‘odd–even effect’ both in the shape and the sign of the CD-effect. In this study, we elucidate the molecular origin of this odd–even effect by a combination of TD-DFT calculations and spectroscopic experiments. In addition, we observed a pronounced effect of the molecular structure of the alkane solvent on the shape of the Cotton effects and the thermodynamic parameters describing the cooperative supramolecular polymerization. The results revealed a different ability of solvent molecules governed by the shape of their structure to intercalate into the helical stacks, which influences the conformation of the monomer within the supramolecular polymer. The solvent affects the dihedral angle (θ) between the CO group and the benzene central core of the BTA molecule. These findings help to increase a molecular-level understanding of how the solvent controls the conformation of repeating units in a supramolecular system.

[1]  Ben L Feringa,et al.  Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor , 2011, Science.

[2]  Yong‐Sheng Hu,et al.  Ionic-liquid synthesis route of TiO(2) (B) nanoparticles for functionalized materials. , 2011, Chemistry.

[3]  W. Edwards,et al.  Solvent–gelator interactions—using empirical solvent parameters to better understand the self-assembly of gel-phase materials , 2011 .

[4]  G. Roelfes,et al.  Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst. , 2010, Nature chemistry.

[5]  P. Hilbers,et al.  Understanding cooperativity in hydrogen-bond-induced supramolecular polymerization: a density functional theory study. , 2010, The journal of physical chemistry. B.

[6]  J. G. Vinter,et al.  The role of functional group concentration in solvation thermodynamics , 2010 .

[7]  Yang Liu,et al.  Ambidextrous circular dichroism and circularly polarised luminescence from poly(9,9-di-n-decylfluorene) by terpene chirality transfer , 2010 .

[8]  M. Fujiki,et al.  Limonene magic: noncovalent molecular chirality transfer leading to ambidextrous circularly polarised luminescent π-conjugated polymers , 2010 .

[9]  M. Žinić,et al.  Positionally isomeric organic gelators: structure-gelation study, racemic versus enantiomeric gelators, and solvation effects. , 2010, Chemistry.

[10]  E. W. Meijer,et al.  Probing the limits of the majority-rules principle in a dynamic supramolecular polymer. , 2010, Journal of the American Chemical Society.

[11]  L. Bouteiller,et al.  Chirality in dynamic supramolecular nanotubes induced by a chiral solvent. , 2010, Chemistry.

[12]  K. Moriya,et al.  Solvent-induced chirality inversion involving supramolecular helix transformation and color-tunable fluorescence of a C(6)-symmetric hexakis(phenylethynyl)benzene derivative. , 2009, Organic & biomolecular chemistry.

[13]  E. W. Meijer,et al.  Asymmetrically substituted benzene-1,3,5-tricarboxamides: self-assembly and odd-even effects in the solid state and in dilute solution. , 2009, Chemistry.

[14]  E. W. Meijer,et al.  C3-symmetrical self-assembled structures investigated by vibrational circular dichroism. , 2008, Chirality.

[15]  E. W. Meijer,et al.  The influence of ethylene glycol chains on the thermodynamics of hydrogen-bonded supramolecular assemblies in apolar solvents. , 2008, Chemical communications.

[16]  E. W. Meijer,et al.  Insight into the mechanisms of cooperative self-assembly: the "sergeants-and-soldiers" principle of chiral and achiral C3-symmetrical discotic triamides. , 2008, Journal of the American Chemical Society.

[17]  E. W. Meijer,et al.  Amplification of chirality in dynamic supramolecular aggregates. , 2007, Angewandte Chemie.

[18]  E. W. Meijer,et al.  Tuning the stacking properties of C3-symmetrical molecules by modifying a dipeptide motif. , 2007, Chemistry.

[19]  B. Feringa,et al.  C3-Symmetric, amino acid based organogelators and thickeners: a systematic study of structure–property relations , 2007 .

[20]  H. Stoeckli-Evans,et al.  Switchable chiral architectures containing Pr(III) ions: an example of solvent-induced adaptive behavior. , 2006, Angewandte Chemie.

[21]  M. Drew,et al.  Formation of triple helical nanofibers using self-assembling chiral benzene-1,3,5-tricarboxamides and reversal of the nanostructure's handedness using mirror image building blocks. , 2006, Chemical communications.

[22]  E. W. Meijer,et al.  Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.

[23]  J. Nitschke,et al.  Solvent-tunable inversion of chirality transfer from carbon to copper. , 2006, Chemical communications.

[24]  L. Bouteiller,et al.  Solvents with similar bulk properties induce distinct supramolecular architectures. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  O. Urakawa,et al.  Large macro-dipoles generated in a supramolecular polymer of N,N′,N″-tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in n-decane , 2006 .

[26]  T. Shikata,et al.  Controlled Large Macrodipoles in a Supramolecular Polymer of Tri-3,7-dimethyloctyl-cis-1,3,5-cyclohexanetricarboxamide inn-Decane , 2005 .

[27]  E. W. Meijer,et al.  Polarized emission of individual self-assembled oligo(p-phenylenevinylene)-based nanofibers on a solid support. , 2005, Journal of the American Chemical Society.

[28]  V. John,et al.  Urea and thiourea derivatives as low molecular-mass organogelators. , 2005, Chemistry.

[29]  Gerard Roelfes,et al.  DNA-based asymmetric catalysis. , 2005, Angewandte Chemie.

[30]  J. Parquette,et al.  Dendrimer folding in aqueous media: an example of solvent-mediated chirality switching. , 2005, Angewandte Chemie.

[31]  K. Sakurai,et al.  Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[32]  C. Park,et al.  Molecular aggregation of disklike benzenetricarboxamides containing diacetylenic groups in bulk and organic solvents. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[33]  K. Hanabusa,et al.  Chiral amplification of the structure and viscoelasticity of a supramolecular polymeric system consisting of N, N', N -tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide and n-decane , 2004 .

[34]  Zhijian Chen,et al.  Supramolecular p-n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. , 2004, Journal of the American Chemical Society.

[35]  T. Fukushima,et al.  Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube , 2004, Science.

[36]  T. Satoh,et al.  Helicity Induction of Polyisocyanate with a Crown Cavity on the Main Chain Synthesized by Cyclopolymerization of α,ω-Diisocyanate , 2004 .

[37]  G. Tew,et al.  Conformational Changes of Facially Amphiphilic meta-Poly(phenylene ethynylene)s in Aqueous Solution , 2004 .

[38]  T. Shikata,et al.  Viscoelastic behavior of supramolecular polymeric systems consisting of N, N', N -tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide and n-alkanes , 2004 .

[39]  G. Gottarelli,et al.  The stepwise supramolecular organisation of guanosine derivatives. , 2004, Chemical record.

[40]  Y. Inoue,et al.  The origin of solvent-controlled supramolecular chirality switching in a bis(zinc porphyrin) system. , 2003, Angewandte Chemie.

[41]  J. Tabei,et al.  Induction of one-handed helix sense in achiral poly(N-propargylamides) , 2003 .

[42]  T. Satoh,et al.  Macromolecular Helicity Induction for Novel Optically Inactive Poly(phenyl isocyanate) Bearing Crown Ether Based on the Host−Guest Complexation , 2003 .

[43]  Katsuhiro Maeda,et al.  Helix-sense inversion of poly(phenylacetylene) derivatives bearing an optically active substituent induced by external chiral and achiral stimuli , 2003 .

[44]  H. Fenniri,et al.  Helical rosette nanotubes with tunable chiroptical properties. , 2002, Journal of the American Chemical Society.

[45]  E. Yashima,et al.  Macromolecular chirality induction on optically inactive poly(4-carboxyphenyl isocyanide) with chiral amines: a dynamic conformational transition of poly(phenyl isocyanide) derivatives. , 2002, Journal of the American Chemical Society.

[46]  Richard G. Jones,et al.  Induction of Preferential Helical Screw Senses in Optically Inactive Polysilanes via Chiral Solvation , 2002 .

[47]  E. Yashima,et al.  Switching of a macromolecular helicity for visual distinction of molecular recognition events. , 2001, Journal of the American Chemical Society.

[48]  K. Torimitsu,et al.  Transfer and amplification of chiral molecular information to polysilylene aggregates. , 2001, Journal of the American Chemical Society.

[49]  E. Yashima,et al.  Stereospecific Polymerization of Propiolic Acid with Rhodium Complexes in the Presence of Bases and Helix Induction on the Polymer in Water , 2001 .

[50]  E. Yashima,et al.  Helicity Induction and Conformational Dynamics of Poly(bis(4-carboxyphenoxy)phosphazene) with Optically Active Amines , 2000 .

[51]  E. W. Meijer,et al.  Chiral Amplification in Columns of Self-Assembled N, N', N"-Tris((S)-3, 7-dimethyloctyl)benzene-1, 3, 5-tricarboxamide in Dilute Solution , 2000 .

[52]  R. Nolte,et al.  Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity , 1999, Science.

[53]  A. Persoons,et al.  Synthesis, Self-Assembly, and Nonlinear Optical Properties of Conjugated Helical Metal Phthalocyanine Derivatives , 1999 .

[54]  A. Spek,et al.  Cyclic Bis‐Urea Compounds as Gelators for Organic Solvents , 1999 .

[55]  J. Warren,et al.  New Supramolecular packing motifs: pi-stacked rods encased in triply helical hydrogen bonded amide strands , 1999 .

[56]  E. Yashima,et al.  Helix−Helix Transition of Optically Active Poly((1R,2S)-N-(4-ethynylbenzyl)norephedrine) Induced by Diastereomeric Acid−Base Complexation Using Chiral Stimuli , 1998 .

[57]  Katsuhiro Maeda,et al.  Helicity induction of poly(3-carboxyphenyl isocyanate) by chiral acid-base interaction , 1998 .

[58]  C. Hunter,et al.  Influence of Solvent on Aromatic Interactions in Metal Tris-Bipyridine Complexes , 1998 .

[59]  B. Novak,et al.  Trapped kinetic states, chiral amplification and molecular chaperoning in synthetic polymers : chiral induction in polyguanidines through ion pair interactions , 1998 .

[60]  E. Yashima,et al.  Induced Helix of an Aliphatic Polyacetylene Detected by Circular Dichroism , 1998 .

[61]  E. W. Meijer,et al.  Sergeants-and-soldiers principle in chiral columnar stacks of disc-shaped molecules with C3 symmetry , 1997 .

[62]  K. Hanabusa,et al.  Remarkable Viscoelasticity of Organic Solvents Containing Trialkyl-1,3,5-benzenetricarboxamides and Their Intermolecular Hydrogen Bonding , 1997 .

[63]  Y. Shirota,et al.  Novel Low-molecular-weight Organic Gels: N,N′,N″-Tristearyltrimesamide/Organic Solvent System , 1996 .

[64]  C. Nuckolls,et al.  Aggregation of Conjugated Helical Molecules , 1996 .

[65]  J. Gallivan,et al.  Aggregates of Hexakis(n-hexyloxy)triphenylene Self-Assemble in Dodecane Solution: Intercalation of (-)-Menthol 3,5-Dinitrobenzoate Induces Formation of Helical Structures , 1995 .

[66]  G. Wallace,et al.  Chemical generation of optically active polyaniline via the doping of emeraldine base with (+)- or (−)-camphorsulfonic acid , 1995 .

[67]  N. C. Peterson,et al.  A macromolecular conformational change driven by a minute chiral solvation energy , 1993 .

[68]  F. Diederich,et al.  Cyclophane-arene inclusion complexation in protic solvents: solvent effects versus electron donor-acceptor interactions , 1991 .

[69]  H. Schneider,et al.  Host-guest chemistry. 14. Solvent and salt effects on binding constants of organic substrates in macrocyclic host compounds. A general equation measuring hydrophobic binding contributions , 1988 .

[70]  Y. Nakayasu,et al.  Design of novel mesomorphic compounds: N,N',N'-trialkyl-1,3,5-benzenetricarboxamides , 1988 .

[71]  I. Ojima,et al.  CHEMOSELECTIVE REACTIONS OF ALLYLSILANES WITH 1,1-DIMETHOXYBUTAN-3-ONE AND 1,1-DIMETHOXYPROPAN-2-ONE , 1978 .

[72]  FujitaJunnosuke,et al.  PREPARATION AND CHARACTERIZATION OF MER AND FAC ISOMERS OF TRIS(MESO-2,4-PENTANEDIAMINE)COBALT(III) COMPLEX , 1976 .

[73]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .