Rainbow graph splitting

Abstract Given an integer c , an edge colored graph G is said to be rainbow c -splittable if it can be decomposed into at most c vertex-disjoint monochromatic induced subgraphs of distinct colors. We provide a polynomial-time algorithm for deciding whether an edge-colored complete graph is rainbow c -splittable. For not necessarily complete graphs, we show that the problem is polynomial if c = 2 , whereas for c ≥ 3 it is NP-complete even if the graph has maximum degree 2 c − 1 . Finally, it remains NP-complete even for 2-edge colored graphs of maximum degree 7 c − 14 .

[1]  Xuding Zhu,et al.  On the adaptable chromatic number of graphs , 2008, Eur. J. Comb..

[2]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[3]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[4]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[5]  Andreas BrandsHidt Partitions of graphs into one or two independent sets and cliques , 1996 .

[6]  V. Yegnanarayanan,et al.  Graph colourings and partitions , 2001, Theor. Comput. Sci..

[7]  Alexandr V. Kostochka,et al.  Adapted List Coloring of Graphs and Hypergraphs , 2008, SIAM J. Discret. Math..

[8]  Fanica Gavril An Efficiently Solvable Graph Partition Problem to Which Many Problems are Reducible , 1993, Inf. Process. Lett..

[9]  Zsolt Tuza,et al.  Minimal colorings for properly colored subgraphs , 1996, Graphs Comb..

[10]  Pavol Hell,et al.  Full Constraint Satisfaction Problems , 2006, SIAM J. Comput..

[11]  Daniel Král,et al.  Two algorithms for general list matrix partitions , 2005, SODA '05.

[12]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[13]  Xueliang Li,et al.  On the minimum monochromatic or multicolored subgraph partition problems , 2007, Theor. Comput. Sci..

[14]  András Gyárfás,et al.  A finite basis characterization of ?-split colorings , 2002, Discret. Math..

[15]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[16]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[17]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[18]  Sulamita Klein,et al.  Complexity of graph partition problems , 1999, STOC '99.

[19]  Michael Molloy,et al.  An asymptotically tight bound on the adaptable chromatic number , 2012, J. Graph Theory.