Approximation of sparse controls in semilinear equations by piecewise linear functions

Semilinear elliptic optimal control problems involving the $$L^1$$ norm of the control in the objective are considered. A priori finite element error estimates for piecewise linear discretizations for the control and the state are proved. These are obtained by a new technique based on an appropriate discretization of the objective function. Numerical experiments confirm the convergence rates.

[1]  Arnd Rösch,et al.  LINFINITY-Estimates for Approximated Optimal Control Problems , 2005, SIAM J. Control. Optim..

[2]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[3]  Fredi Tröltzsch,et al.  Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.

[4]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[5]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[6]  Boris Vexler,et al.  Finite element error analysis for state-constrained optimal control of the Stokes equations , 2008 .

[7]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[8]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[9]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[10]  A. Logg Automating the Finite Element Method , 2007, 1112.0433.

[11]  Eduardo Casas,et al.  Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..

[12]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[13]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[14]  Roland Herzog,et al.  Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..

[15]  Eduardo Casas,et al.  Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems , 2007, Adv. Comput. Math..

[16]  Alfred H. Schatz,et al.  Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates , 2000, SIAM J. Numer. Anal..

[17]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[18]  H. Maurer,et al.  On L1‐minimization in optimal control and applications to robotics , 2006 .

[19]  C. Meyer L ∞-Estimates For Approximated Optimal Control Problems , 2014 .

[20]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[21]  Arnd Rösch,et al.  Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .