Tests of Lorentz Invariance Violation with Gamma Rays to probe Quantum Gravity

Special and general relativity extended our understanding of the concepts of space and time,two of the most basic topics of investigation of modern physics. However, quantum theory hasshown that there is more to learn regarding these concepts. The group of Lorentz transformationsis scale invariant. However, considerations of how to combine the concepts of quantum mechanicsand gravity (quantum gravity) indicate that there is a “natural scale” at which the physics ofspace-time predicted by relativity theory breaks down and thus requires modification, or a newparadigm (Saslow, 1998). This natural scale is the Planck scale, E

[1]  J. Conrad,et al.  Dark matter and fundamental physics with the Cherenkov Telescope Array , 2012, 1208.5356.

[2]  A. Otte,et al.  Prospects of performing Lorentz invariance tests with VHE emission from pulsars , 2012, 1208.2033.

[3]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[4]  T. Weekes,et al.  VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT , 2011, 1109.0050.

[5]  J. Nava,et al.  On the sensitivity of the HAWC observatory to gamma-ray bursts , 2011, 1108.6034.

[6]  T. Weekes,et al.  Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar , 2011, Science.

[7]  Sergey N. Solodukhin,et al.  Entanglement Entropy of Black Holes , 2011, Living reviews in relativity.

[8]  A. R. Bazer-Bachi,et al.  Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken , 2011, 1101.3650.

[9]  J. Bolmont,et al.  Lorentz Symmetry breaking studies with photons from astrophysical observations , 2010, 1007.4954.

[10]  R. E. Hughes,et al.  A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.

[11]  A. Kostelecký,et al.  Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.

[12]  R. Wagner Exploring Quantum Gravity with Very‐High‐Energy Gamma‐Ray Instruments—Prospects and Limitations , 2009, 0901.2932.

[13]  M. Errando,et al.  A new approach to study energy-dependent arrival delays on photons from astrophysical sources , 2008, 0803.2120.

[14]  J. Ellis,et al.  Probing Quantum Gravity using Photons from a flare of the active galactic nucleus Markarian 501 Observed by the MAGIC telescope , 2007, 0708.2889.

[15]  Miguel Ángel Martínez,et al.  Variable Very High Energy γ-Ray Emission from Markarian 501 , 2007, astro-ph/0702008.

[16]  David Mattingly,et al.  Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.

[17]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2003, Living reviews in relativity.

[18]  S. Glashow,et al.  New tests of Lorentz invariance following from observations of the highest energy cosmic γ-rays , 2001, astro-ph/0102226.

[19]  et al,et al.  Reanalysis of the high energy cutoff of the 1997 Mkn 501 TeV energy spectrum , 2000, astro-ph/0011483.

[20]  T. Kifune Invariance Violation Extends the Cosmic-Ray Horizon? , 1999, astro-ph/9904164.

[21]  P. Kaaret PULSAR RADIATION AND QUANTUM GRAVITY , 1999, astro-ph/9903464.

[22]  A. Kostelecký,et al.  Lorentz-Violating Extension of the Standard Model , 1998, hep-ph/9809521.

[23]  W. Saslow A PHYSICAL INTERPRETATION OF THE PLANCK LENGTH , 1998 .

[24]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.