The probability of generating a finite classical group

Two randomly chosen elements of a finite simple classical group G are shown to generate G with probability →1 as ‖G‖ → ∞. Extensions of this result are presented, along with applications to profinite groups.

[1]  P. B. Kleidman,et al.  The maximal subgroups of the Steinberg triality groups 3D4(q) and of their automorphism groups , 1988 .

[2]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .

[3]  Michael Aschbacher,et al.  The 27-dimensional module forE6. I , 1987 .

[4]  Ascher Wagner,et al.  An observation on the degrees of projective representations of the symmetric and alternating group over an arbitrary field , 1977 .

[5]  M. Aschbacher Chevalley groups of type G2 as the group of a trilinear form , 1987 .

[6]  R. Carter,et al.  Conjugacy classes in the Weyl group , 1970 .

[7]  Alan Williamson,et al.  The Probability of Generating the Symmetric Group , 1978 .

[8]  B. Cooperstein Maximal subgroups of G2(2n) , 1981 .

[9]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[10]  The root subgroups for maximal tori in finite groups of Lie type , 1983 .

[11]  R. Carter,et al.  Primary amoebic meningo-encephalitis: An appraisal of present knowledge , 1972 .

[12]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[13]  M. Liebeck On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .

[14]  P. Hall,et al.  THE EULERIAN FUNCTIONS OF A GROUP , 1936 .

[15]  M. Liebeck,et al.  Maximal subgroups of exceptional groups of Lie type, finite and algebraic , 1990 .

[16]  Counting finite index subgroups and the P. Hall enumeration principle , 1989 .

[17]  Robert Steinberg,et al.  Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.

[18]  James Wiegold,et al.  Growth sequences of finite groups , 1974 .

[19]  P. B. Kleidman The maximal subgroups of the Chevalley groups G2(q) with q odd , 1988 .

[20]  J. D. Bovey,et al.  The Probability that some Power of a Permutation has Small Degree , 1980 .

[21]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[22]  James Wiegold Growth sequences of finite groups IV , 1975 .

[23]  Ernest E. Shult,et al.  On a class of doubly transitive groups , 1972 .