On observer design for nonlinear systems

The main weakness of all control methodologies is the dependency of feedbacks to full state measurements. In practical situations, measuring the states of a given system may fail because sometimes the measurements are impossible and sometimes, possible, but too expensive. Observer design for highly nonlinear dynamics is an important issue, particularly when the locally observable dynamics are not linearly observable. In such circumstances the ability to reduce the system to observable or observer form is key to observer design. This paper provides two observers for nonlinear systems given in Brunovski form. The first observer is a high-gain observer with a classical output injection form, while the second is a high-gain observer with a q-integral path. Finally, the discrete-time implementation of the high-gain observer is discussed in linear matrix inequality framework. A motivating example is shown to highlight the efficacy of the developed observers.

[1]  Wei-bing Gao,et al.  On exponential observers for nonlinear systems , 1988 .

[2]  J. Tsinias Further results on the observer design problem , 1990 .

[3]  Michael Zeitz,et al.  Comments on ‘Comparative study of non-linear state-observation techniques’ , 1987 .

[4]  Engin Yaz Design of observers for non-linear time-varying systems , 1988 .

[5]  Kwanghee Nam,et al.  Observer design for autonomous discrete-time nonlinear systems , 1991 .

[6]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[7]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[8]  H. Khalil,et al.  Discrete-time implementation of high-gain observers for numerical differentiation , 1999 .

[9]  Konrad Reif,et al.  An EKF-Based Nonlinear Observer with a Prescribed Degree of Stability , 1998, Autom..

[10]  J. Gauthier,et al.  Exponential observers for nonlinear systems , 1993, IEEE Trans. Autom. Control..

[11]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[12]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992 .

[13]  J. Tsinias Observer design for nonlinear control systems , 1989 .

[14]  T. Ph. Proychev,et al.  Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input , 1993, Autom..

[15]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[16]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[17]  J. Hedrick,et al.  Nonlinear Observers—A State-of-the-Art Survey , 1989 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  Chun-Wen Li,et al.  Observing non-linear time-variable systems through a canonical form observer , 1986 .

[21]  A. Phelps On constructing nonlinear observers , 1991 .

[22]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[23]  A. Glumineau,et al.  Transformation to state affine system and observer design , 1999 .

[24]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[25]  Paul M. Frank,et al.  Nonlinear observer design via an extended observer canonical form , 1990 .

[26]  K. Gu An integral inequality in the stability problem of time-delay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Salim Ibrir,et al.  Online exact differentiation and notion of asymptotic algebraic observers , 2003, IEEE Trans. Autom. Control..

[28]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[29]  Franck Plestan,et al.  Linearization by completely generalized input-output injection , 1999, Kybernetika.

[30]  Salim Ibrir,et al.  A numerical algorithm for filtering and state observation , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[31]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[32]  Robert Engel,et al.  Nonlinear observers for autonomous Lipschitz continuous systems , 2003, IEEE Trans. Autom. Control..

[33]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[34]  J. Hedrick,et al.  Observer design for a class of nonlinear systems , 1994 .

[35]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[36]  F. Rotella,et al.  Design of observers for nonlinear time variant systems , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[37]  Konrad Reif,et al.  The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..

[38]  MingQing Xiao,et al.  Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..

[39]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[40]  A. Tornambè High-gain observers for non-linear systems , 1992 .

[41]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[42]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[43]  Bahram Shafai,et al.  LTR DESIGN OF PROPORTIONAL-INTEGRAL OBSERVERS , 1995 .

[44]  Tzyh Jong Tarn,et al.  Exponential Observers for Nonlinear Dynamic Systems , 1975, Inf. Control..

[45]  Salim Ibrir New differentiators for control and observation applications , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[46]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[47]  B. Shafai,et al.  Robust control system design with a proportional integral observer , 1989 .

[48]  Martin Corless,et al.  COMPARATIVE STUDY OF NONLINEAR STATE OBSERVATION TECHNIQUE , 1987 .

[49]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[50]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[51]  Salim Ibrir,et al.  Linear time-derivative trackers , 2004, Autom..

[52]  Walter D. Grossman,et al.  Observers for discrete-time nonlinear systems , 1999 .