Analysis and Application of Optimal Transport For Challenging Seismic Inverse Problems

In seismic exploration, sources and measurements of seismic waves on the surface are used to determine model parameters representing geophysical properties of the earth. Full-waveform inversion (FWI) is a nonlinear seismic inverse technique that inverts the model parameters by minimizing the difference between the synthetic data from the forward wave propagation and the observed true data in PDE-constrained optimization. The traditional least-squares method of measuring this difference suffers from three main drawbacks including local minima trapping, sensitivity to noise, and difficulties in reconstruction below reflecting layers. Unlike the local amplitude comparison in the least-squares method, the quadratic Wasserstein distance from the optimal transport theory considers both the amplitude differences and the phase mismatches when measuring data misfit. We will briefly review our earlier development and analysis of optimal transport-based inversion and include improvements, for example, a stronger convexity proof. The main focus will be on the third "challenge" with new results on sub-reflection recovery.

[1]  Roelof Versteeg,et al.  The Marmousi experience; velocity model determination on a synthetic complex data set , 1994 .

[2]  Brittany D. Froese,et al.  Application of the Wasserstein metric to seismic signals , 2013, 1311.4581.

[3]  Stanley Osher,et al.  Unbalanced and Partial $$L_1$$L1 Monge–Kantorovich Problem: A Scalable Parallel First-Order Method , 2018, J. Sci. Comput..

[4]  Stanley Osher,et al.  Fast Algorithms for Earth Mover's Distance Based on Optimal Transport and L1 Type Regularization I , 2016 .

[5]  Wotao Yin,et al.  Multilevel Optimal Transport: A Fast Approximation of Wasserstein-1 Distances , 2018, SIAM J. Sci. Comput..

[6]  C. Villani Topics in Optimal Transportation , 2003 .

[7]  Adam M. Oberman,et al.  Convergent Filtered Schemes for the Monge-Ampère Partial Differential Equation , 2012, SIAM J. Numer. Anal..

[8]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[9]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[10]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[11]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[12]  G. Schuster,et al.  Plane-wave Least-squares Reverse Time Migration , 2012 .

[13]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[14]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[15]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[16]  C. Hidalgo,et al.  FWI with Optimal Transport: a 3D Implementation and an Application on a Field Dataset , 2018, 80th EAGE Conference and Exhibition 2018.

[17]  Raúl Tempone,et al.  Multilevel Monte Carlo acceleration of seismic wave propagation under uncertainty , 2018, GEM - International Journal on Geomathematics.

[18]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[19]  Bjorn Engquist,et al.  Full-waveform inversion with an exponentially encoded optimal-transport norm , 2017 .

[20]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[21]  Long-wavelength FWI updates beyond cycle skipping , 2018, SEG Technical Program Expanded Abstracts 2018.

[22]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[23]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[24]  Cory D. Hauck,et al.  Diagnosing Forward Operator Error Using Optimal Transport , 2018, Journal of Scientific Computing.

[25]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[26]  Montacer Essid,et al.  Quadratically-Regularized Optimal Transport on Graphs , 2017, SIAM J. Sci. Comput..

[27]  Gustavo K. Rohde,et al.  Transport-based analysis, modeling, and learning from signal and data distributions , 2016, ArXiv.

[28]  Bjorn Engquist,et al.  Seismic imaging and optimal transport , 2018, Commun. Inf. Syst..

[29]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[30]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .

[31]  Brittany D. Froese,et al.  Optimal Transport for Seismic Full Waveform Inversion , 2016, 1602.01540.

[32]  Wafik B. Beydoun,et al.  First Born and Rytov approximations: Modeling and inversion conditions in a canonical example , 1988 .

[33]  J. Benamou,et al.  Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem , 2017, European Journal of Applied Mathematics.

[34]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[35]  Pengliang Yang,et al.  A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium , 2016 .

[36]  S. Brandsberg-Dahl,et al.  The 2004 BP Velocity Benchmark , 2005 .

[37]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[38]  Adam M. Oberman,et al.  An efficient linear programming method for Optimal Transportation , 2015, 1509.03668.

[39]  Brittany D. Froese A Numerical Method for the Elliptic Monge-Ampère Equation with Transport Boundary Conditions , 2011, SIAM J. Sci. Comput..

[40]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[41]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[42]  Bjorn Engquist,et al.  Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion , 2016, 1612.05075.

[43]  R. Brossier,et al.  A graph-space approach to optimal transport for full-waveform inversion , 2018, SEG Technical Program Expanded Abstracts 2018.

[44]  Mohammad Motamed,et al.  WASSERSTEIN METRIC-DRIVEN BAYESIAN INVERSION WITH APPLICATIONS TO SIGNAL PROCESSING , 2018, International Journal for Uncertainty Quantification.

[45]  J. Virieux,et al.  Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion , 2016 .

[46]  Yunan Yang,et al.  Analysis of optimal transport and related misfit functions in full-waveform inversion , 2017 .

[47]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[48]  Bernhard Schmitzer,et al.  A Sparse Multiscale Algorithm for Dense Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[49]  Bjorn Engquist,et al.  Seismic inversion and the data normalization for optimal transport , 2018, Methods and Applications of Analysis.

[50]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[51]  S. Rachev,et al.  Mass transportation problems , 1998 .

[52]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[53]  Dinghui Yang,et al.  The quadratic Wasserstein metric for earthquake location , 2017, J. Comput. Phys..

[54]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[55]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[56]  J. Virieux,et al.  An introduction to full waveform inversion , 2016 .

[57]  C. Villani Optimal Transport: Old and New , 2008 .

[58]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[59]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[60]  J. Virieux,et al.  An optimal transport approach for seismic tomography: application to 3D full waveform inversion , 2016 .

[61]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[62]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .