Discrete Optimization as an Alternative to Sequential Processing in NLG

We present an NLG system that uses Integer Linear Programming to integrate different decisions involved in the generation process. Our approach provides an alternative to pipeline-based sequential processing which has become prevalent in today’s NLG applications.

[1]  Marie W. Meteer Abstract Linguistic Resources for Text Planning , 1990, INLG.

[2]  Aravind K. Joshi,et al.  Tree-adjoining grammars and lexicalized grammars , 1992, Tree Automata and Languages.

[3]  Dan Roth,et al.  A Linear Programming Formulation for Global Inference in Natural Language Tasks , 2004, CoNLL.

[4]  Michael Zock,et al.  Architectures for Natural Language Generation: Problems and Perspectives , 1993, EWNLG.

[5]  Ehud Reiter,et al.  Contextual Influences on Near-Synonym Choice , 2004, INLG.

[6]  Ion Androutsopoulos,et al.  Learning to Order Facts for Discourse Planning in Natural Language Generation , 2003, ENLG@EACL.

[7]  Mark Dras,et al.  Tree adjoining grammar and the reluctant paraphrasing of text , 1999 .

[8]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[9]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[10]  Douglas E. Appelt,et al.  Planning English Sentences , 1988, Cogn. Sci..

[11]  Walter Daelemans,et al.  Memory-based lexical acquisition and processing , 1993, EAMT.

[12]  Ehud Reiter,et al.  Has a Consensus NL Generation Architecture Appeared, and is it Psycholinguistically Plausible? , 1994, INLG.

[13]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[14]  Michael Strube,et al.  Classification-Based Generation Using TAG , 2004, INLG.

[15]  Laurence Danlos,et al.  Conceptual and Linguistic Decisions in Generation , 1984, ACL.

[16]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[17]  L. A. Goodman,et al.  Measures of Association for Cross Classifications, IV: Simplification of Asymptotic Variances , 1972 .

[18]  Pablo Ariel Duboué,et al.  Indirect Supervised Learning of Content Selection Logic , 2004, INLG.

[19]  Walter Daelemans,et al.  Rapid Development of NLP Modules with Memory-based Learning , 1998 .

[20]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[21]  Carl Vogel,et al.  Proceedings of the 16th International Conference on Computational Linguistics , 1996, COLING 1996.

[22]  Michael Strube,et al.  Modeling and Annotating the Semantics of Route Directions , 2005 .

[23]  A. L. Edwards,et al.  An introduction to linear regression and correlation. , 1985 .

[24]  Lynne Cahill,et al.  Component tasks in applied NLG systems , 2007 .

[25]  Chris Mellish,et al.  Corpus-based NP Modifier Generation , 2001, NAACL.

[26]  Chris Mellish,et al.  A Reference Architecture for Generation Systems , 2004, Natural Language Engineering.

[27]  C. H. R I S M E L L I S H,et al.  A Reference Architecture for Generation Systems , 2004 .

[28]  Ernst Althaus,et al.  Computing Locally Coherent Discourses , 2004, ACL.

[29]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[30]  Bonnie L. Webber,et al.  Anchoring a Lexicalized Tree-Adjoining Grammar for Discourse , 1998, ArXiv.

[31]  Joseph Naor,et al.  Approximation algorithms for the metric labeling problem via a new linear programming formulation , 2001, SODA '01.

[32]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[33]  Chris Mellish,et al.  Implementation architectures for natural language generation , 2004, Natural Language Engineering.