New properties of forward-backward splitting and a practical proximal-descent algorithm

Abstract In this paper, we discuss a proximal-descent algorithm for finding a zero of the sum of two maximal monotone operators in a real Hilbert space. Some new properties of forward–backward splitting are given, which extend the well-known properties of the usual projection. Then, they are used to analyze the weak convergence of the proximal-descent algorithm without assuming Lipschitz continuity of the forward operator. We also give a new technique of choosing trial values of the step length involved in an Armijo-like condition, which returns the (not necessarily decreasing) step length self-adaptively. Rudimentary numerical experiments show that it is effective in practical implementations.

[1]  Gian-Carlo Rota Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .

[2]  D. Pascali,et al.  Nonlinear mappings of monotone type , 1979 .

[3]  B. He A class of projection and contraction methods for monotone variational inequalities , 1997 .

[4]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[5]  Yunda Dong An extension of Luque's growth condition , 2009, Appl. Math. Lett..

[6]  M. D. Voisei,et al.  Maximal monotonicity criteria for the composition and the sum under weak interiority conditions , 2010, Math. Program..

[7]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[8]  Yunda Dong,et al.  A variable metric Proximal-Descent Algorithm for monotone operators , 2012 .

[9]  M. Sibony Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone , 1970 .

[10]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[11]  R. Tyrrell Rockafellar,et al.  Convergence Rates in Forward-Backward Splitting , 1997, SIAM J. Optim..

[12]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[13]  Defeng Sun,et al.  A class of iterative methods for solving nonlinear projection equations , 1996 .

[14]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[15]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[16]  Teemu Pennanen,et al.  Dualization of Generalized Equations of Maximal Monotone Type , 1999, SIAM J. Optim..

[17]  D. Bertsekas,et al.  TWO-METRIC PROJECTION METHODS FOR CONSTRAINED OPTIMIZATION* , 1984 .

[18]  T. Zhu,et al.  A simple proof for some important properties of the projection mapping , 2004 .

[19]  H. Brezis,et al.  Produits infinis de resolvantes , 1978 .

[20]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[23]  Muhammad Aslam Noor,et al.  Mixed quasi variational inequalities , 2003, Appl. Math. Comput..

[24]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[25]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[26]  Yunda Dong The Proximal Point Algorithm Revisited , 2014, J. Optim. Theory Appl..

[27]  Yunda Dong,et al.  A practical PR+ conjugate gradient method only using gradient , 2012, Appl. Math. Comput..

[28]  P. Toint Global Convergence of a a of Trust-Region Methods for Nonconvex Minimization in Hilbert Space , 1988 .

[29]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[30]  Yunda Dong,et al.  New step lengths in conjugate gradient methods , 2010, Comput. Math. Appl..