Tensor-Train Decomposition

A simple nonrecursive form of the tensor decomposition in $d$ dimensions is presented. It does not inherently suffer from the curse of dimensionality, it has asymptotically the same number of parameters as the canonical decomposition, but it is stable and its computation is based on low-rank approximation of auxiliary unfolding matrices. The new form gives a clear and convenient way to implement all basic operations efficiently. A fast rounding procedure is presented, as well as basic linear algebra operations. Examples showing the benefits of the decomposition are given, and the efficiency is demonstrated by the computation of the smallest eigenvalue of a 19-dimensional operator.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Eugene E. Tyrtyshnikov,et al.  Linear algebra for tensor problems , 2009, Computing.

[3]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[4]  Jonas Persson,et al.  Pricing European multi-asset options using a space-time adaptive FD-method , 2007 .

[5]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[6]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[7]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[8]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[9]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[11]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[12]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[13]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[14]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[15]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[16]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[17]  H. Meyer,et al.  Benchmark calculations on high-dimensional Henon–Heiles potentials with the multi-configuration time dependent Hartree (MCTDH) method , 2002 .

[18]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[19]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[20]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[21]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[22]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[23]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[24]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[25]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[26]  Ivan V. Oseledets,et al.  Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case , 2010, SIAM J. Sci. Comput..

[27]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[28]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[29]  Ivan Oseledets,et al.  Quantics-TT Approximation of Elliptic Solution Operators in Higher Dimensions , 2009 .

[30]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[31]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[32]  Boris N. Khoromskij,et al.  Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..

[33]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[34]  Eugene E. Tyrtyshnikov,et al.  Approximate multiplication of tensor matrices based on the individual filtering of factors , 2009 .

[35]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[36]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[37]  Ivan Oseledets,et al.  Tensor Structured Iterative Solution of Elliptic Problems with Jumping Coefficients , 2010 .

[38]  Oriol Vendrell,et al.  Full-dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state. , 2007, The Journal of chemical physics.

[39]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[40]  W. Dur,et al.  Concatenated tensor network states , 2009, 0904.1925.

[41]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[42]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..