Conformal welding for critical Liouville quantum gravity

Consider two critical Liouville quantum gravity surfaces (i.e., $\gamma$-LQG for $\gamma=2$), each with the topology of $\mathbb{H}$ and with infinite boundary length. We prove that there a.s. exists a conformal welding of the two surfaces, when the boundaries are identified according to quantum boundary length. This results in a critical LQG surface decorated by an independent SLE$_4$. Combined with the proof of uniqueness for such a welding, recently established by McEnteggart, Miller, and Qian (2018), this shows that the welding operation is well-defined. Our result is a critical analogue of Sheffield's quantum gravity zipper theorem (2016), which shows that a similar conformal welding for subcritical LQG (i.e., $\gamma$-LQG for $\gamma\in(0,2)$) is well-defined.

[1]  J. Norris Appendix: probability and measure , 1997 .

[2]  J. Kahane Sur le chaos multiplicatif , 1985 .

[3]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[4]  S. Sheffield,et al.  Liouville quantum gravity as a mating of trees , 2014, 1409.7055.

[5]  Scott Sheffield,et al.  Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.

[6]  Javier E. Acosta Tightness of the recentered maximum of log-correlated Gaussian fields , 2013, 1311.2000.

[7]  Gregory F. Lawler Schramm-Loewner Evolution , 2007, 0712.3256.

[8]  R. Robert,et al.  Gaussian multiplicative chaos revisited , 2008, 0807.1030.

[9]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[10]  Scott Sheffield,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.

[11]  E. Powell Critical Gaussian chaos: convergence and uniqueness in the derivative normalisation , 2017, 1704.06058.

[12]  Juhan Aru,et al.  Critical Liouville measure as a limit of subcritical measures , 2018, Electronic Communications in Probability.

[13]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[14]  R. Durrett Probability: Theory and Examples , 1993 .

[15]  E. Saksman,et al.  Random conformal weldings , 2009, 0909.1003.

[16]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[17]  Peter J. Huber,et al.  Wiley Series in Probability and Mathematics Statistics , 2005 .

[18]  David M. Williams Path Decomposition and Continuity of Local Time for One‐Dimensional Diffusions, I , 1974 .

[19]  S. Benoist Natural parametrization of SLE: the Gaussian free field point of view , 2017, 1708.03801.

[20]  Ellen Powell,et al.  Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .

[21]  Nicolae Tecu Random Conformal Weldings at criticality , 2012, 1205.3189.

[22]  E. Saksman,et al.  Random Curves by Conformal Welding , 2009, 0912.3423.

[23]  Jason Miller,et al.  UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY , 2018, Journal of the Institute of Mathematics of Jussieu.

[24]  Peter W. Jones,et al.  Removability theorems for Sobolev functions and quasiconformal maps , 2000 .

[25]  A. Shamov On Gaussian multiplicative chaos , 2014, 1407.4418.

[26]  V. Vargas,et al.  The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient , 2017, The Annals of Probability.

[27]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[28]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[29]  R. Pinsky ON THE CONVERGENCE OF DIFFUSION PROCESSES CONDITIONED TO REMAIN IN A BOUNDED REGION FOR LARGE TIME TO LIMITING POSITIVE RECURRENT DIFFUSION PROCESSES , 1985 .

[30]  J. D. Biggins,et al.  Measure change in multitype branching , 2004, Advances in Applied Probability.

[31]  N. Berestycki,et al.  Lectures on Schramm–Loewner Evolution , 2011 .

[32]  Nathanael Berestycki,et al.  An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.