Conformal welding for critical Liouville quantum gravity
暂无分享,去创建一个
[1] J. Norris. Appendix: probability and measure , 1997 .
[2] J. Kahane. Sur le chaos multiplicatif , 1985 .
[3] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[4] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[5] Scott Sheffield,et al. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.
[6] Javier E. Acosta. Tightness of the recentered maximum of log-correlated Gaussian fields , 2013, 1311.2000.
[7] Gregory F. Lawler. Schramm-Loewner Evolution , 2007, 0712.3256.
[8] R. Robert,et al. Gaussian multiplicative chaos revisited , 2008, 0807.1030.
[9] Oded Schramm,et al. Basic properties of SLE , 2001 .
[10] Scott Sheffield,et al. Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.
[11] E. Powell. Critical Gaussian chaos: convergence and uniqueness in the derivative normalisation , 2017, 1704.06058.
[12] Juhan Aru,et al. Critical Liouville measure as a limit of subcritical measures , 2018, Electronic Communications in Probability.
[13] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[14] R. Durrett. Probability: Theory and Examples , 1993 .
[15] E. Saksman,et al. Random conformal weldings , 2009, 0909.1003.
[16] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[17] Peter J. Huber,et al. Wiley Series in Probability and Mathematics Statistics , 2005 .
[18] David M. Williams. Path Decomposition and Continuity of Local Time for One‐Dimensional Diffusions, I , 1974 .
[19] S. Benoist. Natural parametrization of SLE: the Gaussian free field point of view , 2017, 1708.03801.
[20] Ellen Powell,et al. Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .
[21] Nicolae Tecu. Random Conformal Weldings at criticality , 2012, 1205.3189.
[22] E. Saksman,et al. Random Curves by Conformal Welding , 2009, 0912.3423.
[23] Jason Miller,et al. UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY , 2018, Journal of the Institute of Mathematics of Jussieu.
[24] Peter W. Jones,et al. Removability theorems for Sobolev functions and quasiconformal maps , 2000 .
[25] A. Shamov. On Gaussian multiplicative chaos , 2014, 1407.4418.
[26] V. Vargas,et al. The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient , 2017, The Annals of Probability.
[27] J. A. Salvato. John wiley & sons. , 1994, Environmental science & technology.
[28] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[29] R. Pinsky. ON THE CONVERGENCE OF DIFFUSION PROCESSES CONDITIONED TO REMAIN IN A BOUNDED REGION FOR LARGE TIME TO LIMITING POSITIVE RECURRENT DIFFUSION PROCESSES , 1985 .
[30] J. D. Biggins,et al. Measure change in multitype branching , 2004, Advances in Applied Probability.
[31] N. Berestycki,et al. Lectures on Schramm–Loewner Evolution , 2011 .
[32] Nathanael Berestycki,et al. An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.